Перевод: со всех языков на русский

с русского на все языки

(алгоритма или сети)

  • 1 branchement

    сущ.
    1) общ. включение, ответвление, отвод, присоединение, разветвление
    3) ж.д. стрелочный перевод, (de voie) стрелка
    4) электр. ввод
    5) выч. команда передачи управления, подключение, переход (в алгоритме или программе), передача управления (ñì. òæ. aiguillage), переход, ветвление, команда перехода управления, ветвь (см. тж. branche; алгоритма или сети)

    Французско-русский универсальный словарь > branchement

  • 2 branche

    1. прил.
    общ. находящийся в курсе нового, понимающий, модный
    2. сущ.
    1) общ. ветка, линия, ответвление, отрасль, ветвь (Br.), колено (родословной), одна из однородных частей предмета, следящий за модой, специальность, сук, понимающий человек, разветвление, специализация, стержень, поклонник моды
    2) мед. бранша, бранша (ножниц)
    3) тех. отрог, апофиза (рудной жилы), колено (трубопровода)
    4) стр. (устройство) отвод
    5) авт. луч (колеса, диски)
    6) метал. колено трубопровода, плечо, рукав (устройства для шаблонной формовки)
    9) выч. ветвь (алгоритма или сети), ребро (в графе), раздел (ñì. òæ. branchement)
    10) лит. бранш (отдельное повествование, эпического цикла)
    11) час. коромысло, перекладина, филигран, спица баланса

    Французско-русский универсальный словарь > branche

  • 3 Leaky Bucket

    1) Общая лексика: Термин, используемый для алгоритма, служащего для проверки соответствия потока ячеек от пользователя или сети (см (GCRA, UPC и NPC). Выражение "leaking hole in the bucket" применяется к устойчивой скорости, с которой ячейки могут быть во)

    Универсальный англо-русский словарь > Leaky Bucket

  • 4 switch

    1. переключатель (в программе)
    2. переключатель
    3. коммутационный аппарат
    4. коммутатор (сети и системы связи)
    5. коммутатор (в вычислительной сети)
    6. коммутатор
    7. выключатель

     

    выключатель
    Коммутационный электрический аппарат, имеющий два коммутационных положения или состояния и предназначенный для включении и отключения тока.
    Примечание. Под выключателем обычно понимают контактный аппарат без самовозврата. В остальных случаях термин должен быть дополнен поясняющими словами, например, «выключатель с самовозвратом», «выключатель тиристорный» и т. д.
    [ ГОСТ 17703-72]

    выключатель
    Контактный коммутационный аппарат, способный включать, проводить и отключать токи при нормальных условиях в цепи, а также включать, проводить в течение нормированного времени и отключать токи при нормированных анормальных условиях в цепи, таких как короткое замыкание.
    [ ГОСТ Р 52565-2006]

    выключатель
    Устройство для включения и отключения тока и напряжения в одной или более электрических цепях.
    Примечание. При отсутствии других указаний под понятиями «напряжение» и «ток» подразумевают их среднеквадратичные значения.
    [ ГОСТ Р 51324.1-2005]

    выключатель

    Прибор для включения и отключения электрического оборудования и устройств
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    EN

    (on-off) switch
    switch for alternatively closing and opening one or more electric circuits
    Source: 581-10-01 MOD
    [IEV number 151-12-23]

    FR

    interrupteur, m
    commutateur destiné à fermer et ouvrir alternativement un ou plusieurs circuits électriques
    Source: 581-10-01 MOD
    [IEV number 151-12-23]

    При отключении воздушных и кабельных линий тупикового питания первым рекомендуется отключать выключатель со стороны нагрузки, вторым — со стороны питания.
    [РД 153-34.0-20.505-2001]

    ... так чтобы она с меньшей выдержкой времени отключала выключатели с той стороны, на которой защита отсутствует;
    [ПУЭ]

    б) блокировка между выключателями нагрузки или разъединителем и заземляющим разъединителем, не позволяющая включать выключатель нагрузки или разъединитель при включенном заземляющем разъединителе и включать заземляющий разъединитель при включенном выключателе нагрузки или разъединителе;
    [ ГОСТ 12.2.007.4-75]

    Испытания изоляции выключателей и разъединителей должны быть проведены при включенном и отключенном положениях.
    [ ГОСТ 1516_1-76]
     


    Выключатели предназначены для оперативной и аварийной коммутации в энергосистемах, т.е. выполнения операций включения и отключения отдельных цепей при ручном или автоматическом управлении. Во включенном состоянии выключатели должны беспрепятственно пропускать токи нагрузки. Характер режима работы этих аппаратов несколько необычен: нормальным для них считается как включенное состояние, когда они обтекаются током нагрузки, так и отключенное, при котором они обеспечивают необходимую электрическую изоляцию между разомкнутыми участками цепи. Коммутация цепи, осуществляемая при переключении выключателя из одного положения в другое, производится нерегулярно, время от времени, а выполнение им специфических требований по отключению возникающего в цепи короткого замыкания чрезвычайно редко. Выключатели должны надежно выполнять свои функции в течение срока службы, находясь в любом из указанных состояний, и одновременно быть всегда готовыми к мгновенному эффективному выполнению любых коммутационных операций, часто после длительного пребывания в неподвижном состоянии. Отсюда следует, что они должны иметь очень высокий коэффициент готовности: при малой продолжительности процессов коммутации (несколько минут в год) должна быть обеспечена постоянная готовность к осуществлению коммутаций.
    [ http://relay-protection.ru/content/view/46/8/]

    Тематики

    Действия

    Сопутствующие термины

    EN

    DE

    FR

     

    коммутатор
    -

    Коммутатор (англ. Switch) -
    в переводе с англ. означает переключатель. Это многопортовое устройство, обеспечивающее высокоскоростную коммутацию пакетов между портами. Встроенное в него программное обеспечение способно самостоятельно анализировать содержимое пересылаемых по сети блоков данных и обеспечивать прямую передачу информации между любыми двумя портами, независимо от всех остальных портов устройства.

    Одновременно с разработкой новых, более высокоскоростных технологий передачи данных перед производителями компьютерного оборудования по-прежнему стояла задача найти какие-либо способы увеличения производительности локальных сетей Ethernet старого образца, минимизировав при этом как финансовые затраты на приобретение новых устройств, так и технологические затраты на модернизацию уже имеющейся сети. Поскольку класс 10Base2 был единодушно признан всеми разработчиками "вымирающим", эксперты сосредоточились на технологии 10BaseT. И подходящее решение вскоре было найдено.

    Как известно, стандарт Ethernet подразумевает использование алгоритма широковещательной передачи данных. Это означает, что в заголовке любого пересылаемого по сети блока данных присутствует информация о конечном получателе этого блока, и программное обеспечение каждого компьютера локальной сети, принимая такой пакет, всякий раз анализирует его содержимое, пытаясь "выяснить", стоит ли передать данные протоколам более высокого уровня (если принятый блок информации предназначен именно этому компьютеру) или ретранслировать его обратно в сеть (если блок данных направляется на другую машину). Уже одно это заметно замедляет работу всей локальной сети. А если принять во внимание тот факт, что устройства, используемые в качестве центрального модуля локальных сетей с топологией "звезда" - концентраторы (хабы) - обеспечивают не параллельную, а последовательную передачу данных, то мы обнаруживаем еще одно "слабое звено", которое не только снижает скорость всей системы, но и нередко становится причиной "заторов" в случаях, когда, например, на один и тот же узел одновременно отсылается несколько потоков данных от разных компьютеров-отправителей. Если возложить задачу первоначальной сортировки пакетов на хаб, то эту проблему можно было бы частично решить. Это было проделано, и в результате появилось устройство, названное switch, или коммутатор.

    Switch полностью заменяет в структуре локальной сети 10BaseT хаб, да и выглядят эти два устройства практически одинаково, однако принцип работы коммутатора имеет целый ряд существенных различий. Основное различие заключается в том, что встроенное в switch программное обеспечение способно самостоятельно анализировать содержимое пересылаемых по сети блоков данных и обеспечивать прямую передачу информации между любыми двумя из своих портов независимо от всех остальных портов устройства.

    Эту ситуацию можно проиллюстрировать на простом примере. Предположим, у нас имеется коммутатор, оснащенный 16 портами. К порту 1 подключен компьютер А, который передает некую последовательность данных компьютеру С, присоединенному к 16-му порту. В отличие от хаба, получив этот пакет данных, коммутатор не ретранслирует его по всем имеющимся в его распоряжении портам в надежде, что рано или поздно он достигнет адресата, а проанализировав содержащуюся в пакете информацию, передает его непосредственно на 16-й порт. В то же самое время на порт 9 коммутатора приходит блок данных из другого сегмента локальной сети 10BaseT, подключенного к устройству через собственный хаб. Поскольку этот блок адресован компьютеру В, он сразу отправляется на порт 3, к которому тот присоединен.

    Следует понимать, что эти две операции коммутатор выполняет одновременно и независимо друг от друга. Очевидно, что при наличии 16 портов мы можем одновременно направлять через коммутатор 8 пакетов данных, поскольку порты задействуются парами. Таким образом, суммарная пропускная способность данного устройства составит 8 х 10 = 80 Мбит/с, что существенно ускорит работу сети, в то время как на каждом отдельном подключении сохранится стандартное значение 10 Мбит/с. Другими словами, при использовании коммутатора мы уменьшаем время прохождения пакетов через сетевую систему, не увеличивая фактическую скорость соединения.

    Итак, в отличие от концентраторов, осуществляющих широковещательную рассылку всех пакетов, принимаемых по любому из портов, коммутаторы передают пакеты только целевому устройству (адресату). В результате уменьшается трафик и повышается общая пропускная способность, а эти два фактора являются критическими с учетом растущих требований к полосе пропускания сети со стороны современных приложений.

    Коммутация популярна как простой, недорогой метод повышения доступной полосы пропускания сети. Современные коммутаторы нередко поддерживают такие средства, как назначение приоритетов трафика (что особенно важно при передаче в сети речи или видео), функции управления сетью и управление многоадресной рассылкой.

    Приведем некоторые общие характеристики коммутаторов:защита с помощью брандмауэров;

    • кэширование Web-данных, поддержка высокоскоростных гигабитных соединений;
    • расширенные возможности сетевой телефонии;
    • защита настольных компьютеров и сетевое управление;
    • фильтрация многоадресного трафика для более эффективного использования полосы пропускания при работе с видеотрафиком;
    • адаптивная буферизация портов с распределением памяти между буферами портов в реальном времени, обеспечивающая автоматическую оптимизацию производительности в зависимости от сетевого трафика;
    • управление потоками на основе стандартов для обеспечения максимальной производительности и минимизации потерь пакетов при большой загрузке сети;
    • поддержка объединения каналов для создания единого высокоскоростного канала связи с другим коммутатором или магистральной сетью;
    • автоматическое определение полу/полнодуплексного режима на всех портах, обеспечивающее максимальную производительность без ручной настройки;
    • порты 10/100 Мбит/с с автоматическим определением скорости передачи для каждого порта автоматически настраиваются на скорость подключенного устройства;
    • встроенная система контроля и управления позволяет уполномоченным администраторам осуществлять поиск и устранение неисправностей и настройку стека из любого места;
    • поддержка отказоустойчивых соединений, а также дополнительных резервных блоков питания.


    [ http://sharovt.narod.ru/l10.htm]

    Тематики

    EN

     

    коммутатор (сети и системы связи)
    Активный сетевой компонент, который соединяет две или несколько подсетей, которые, в свою очередь, могут состоять из сегментов, соединенных повторителями.
    Примечание. Коммутаторы устанавливают границы для так называемых областей коллизий. Между сетями, разделенными коммутаторами, коллизии невозможны; пакеты, направляемые на конкретную подсеть, на другие подсети не попадают. Для этого коммутаторы должны знать адреса оборудования подключенных станций. Коллизий в сети можно полностью избежать в том случае, если к порту коммутатора подключен только один активный сетевой компонент.
    [ ГОСТ Р 54325-2011 (IEC/TS 61850-2:2003)]

    EN

    switch
    active network component. Switches connect two or more sub networks, which themselves could be built of several segments connected by repeaters. Switches establish the borders for so called collision domains. Collisions cannot take place between networks divided by switches, data packets destined to a specific sub network do not appear on the other sub networks. To achieve this, switches must have knowledge of the hardware addresses of the connected stations. In cases where only one active network component is connected to a switch port, collisions on the network can be avoided
    [IEC 61850-2, ed. 1.0 (2003-08)]

    Тематики

    EN

     

    коммутационный аппарат
    Аппарат, предназначенный для включения или отключения тока в одной или нескольких электрических цепях.
    МЭК 60050(441-14-01).
    Примечание.  Коммутационный аппарат может совершать одну из этих операций или обе
    [ ГОСТ Р 50030. 1-2000 ( МЭК 60947-1-99)]

    коммутационный аппарат
    Электрический аппарат, предназначенный для коммутации электрической цепи и снятия напряжения с части электроустановки (выключатель, выключатель нагрузки, отделитель, разъединитель, автомат, рубильник, пакетный выключатель, предохранитель и т.п.).
    [ПОТ Р М-016-2001]
    [РД 153-34.0-03.150-00]

    EN

    switching device
    a device designed to make or break the current in one or more electric circuits
    [IEV number 441-14-01]

    FR

    appareil de connexion
    appareil destiné à établir ou à interrompre le courant dans un ou plusieurs circuits électriques
    [IEV number 441-14-01]

    Тематики

    • аппарат, изделие, устройство...

    EN

    DE

    FR

     

    переключатель
    Контактный коммутационный аппарат, предназначенный для переключения электрических цепей.
    [ ГОСТ 17703-72]

    переключатель
    коммутатор
    -
    [IEV number 151-12-22]

    EN

    switch
    device for changing the electric connections among its terminals
    [IEV number 151-12-22]

    FR

    commutateur (1), m
    dispositif destiné à modifier les connexions électriques entre ses bornes
    [IEV number 151-12-22]

    Тематики

    • аппарат, изделие, устройство...
    • выключатель, переключатель

    Классификация

    >>>

    EN

    DE

    FR

     

    переключатель (в программе)
    Управляемый флажком выбор одного перехода из группы возможных переходов в программе.
    [ ГОСТ 19781-90]

    Тематики

    • обеспеч. систем обраб. информ. программное

    EN

    3.44 коммутатор (switch): Устройство, обеспечивающее возможность соединения сетевых устройств посредством внутренних механизмов коммутации.

    Примечание - В отличие от других соединительных устройств локальной сети (например, концентраторов) используемая в коммутаторах технология устанавливает соединения на основе «точка-точка». Это обеспечивает возможность того, чтобы сетевой трафик был виден только адресованным сетевым устройствам, и делает возможным одновременное существование нескольких соединений. Технология коммутации обычно может быть реализована на втором или третьем уровне эталонной модели взаимодействия открытых систем.

    Источник: ГОСТ Р ИСО/МЭК 18028-1-2008: Информационная технология. Методы и средства обеспечения безопасности. Сетевая безопасность информационных технологий. Часть 1. Менеджмент сетевой безопасности оригинал документа

    3.39 коммутатор (switch): Устройство, обеспечивающее соединение сетевых устройств посредством внутренних механизмов коммутации, с технологией коммутации, обычно реализованной на втором или третьем уровне эталонной модели взаимодействия открытых систем.

    Примечание - Коммутаторы отличаются от других соединительных устройств локальной сети (например, концентраторов), так как используемая в коммутаторах технология устанавливает соединения на основе «точка - точка».

    Источник: ГОСТ Р ИСО/МЭК 27033-1-2011: Информационная технология. Методы и средства обеспечения безопасности. Безопасность сетей. Часть 1. Обзор и концепции оригинал документа

    3.1 выключатель (switch): Устройство для включения и отключения тока и напряжения1) в одной или более электрических цепях.

    1) При отсутствии других указаний под понятиями «напряжение» и «ток» подразумевают их среднеквадратичные значения.

    Источник: ГОСТ Р 51324.1-2005: Выключатели для бытовых и аналогичных стационарных электрических установок. Часть 1. Общие требования и методы испытаний оригинал документа

    72. Переключатель (в программе)

    Switch

    Управляемый флажком выбор одного перехода из группы возможных переходов в программе

    Источник: ГОСТ 19781-90: Обеспечение систем обработки информации программное. Термины и определения оригинал документа

    Англо-русский словарь нормативно-технической терминологии > switch

  • 5 networking switch

    1. коммутатор (в вычислительной сети)

     

    коммутатор
    -

    Коммутатор (англ. Switch) -
    в переводе с англ. означает переключатель. Это многопортовое устройство, обеспечивающее высокоскоростную коммутацию пакетов между портами. Встроенное в него программное обеспечение способно самостоятельно анализировать содержимое пересылаемых по сети блоков данных и обеспечивать прямую передачу информации между любыми двумя портами, независимо от всех остальных портов устройства.

    Одновременно с разработкой новых, более высокоскоростных технологий передачи данных перед производителями компьютерного оборудования по-прежнему стояла задача найти какие-либо способы увеличения производительности локальных сетей Ethernet старого образца, минимизировав при этом как финансовые затраты на приобретение новых устройств, так и технологические затраты на модернизацию уже имеющейся сети. Поскольку класс 10Base2 был единодушно признан всеми разработчиками "вымирающим", эксперты сосредоточились на технологии 10BaseT. И подходящее решение вскоре было найдено.

    Как известно, стандарт Ethernet подразумевает использование алгоритма широковещательной передачи данных. Это означает, что в заголовке любого пересылаемого по сети блока данных присутствует информация о конечном получателе этого блока, и программное обеспечение каждого компьютера локальной сети, принимая такой пакет, всякий раз анализирует его содержимое, пытаясь "выяснить", стоит ли передать данные протоколам более высокого уровня (если принятый блок информации предназначен именно этому компьютеру) или ретранслировать его обратно в сеть (если блок данных направляется на другую машину). Уже одно это заметно замедляет работу всей локальной сети. А если принять во внимание тот факт, что устройства, используемые в качестве центрального модуля локальных сетей с топологией "звезда" - концентраторы (хабы) - обеспечивают не параллельную, а последовательную передачу данных, то мы обнаруживаем еще одно "слабое звено", которое не только снижает скорость всей системы, но и нередко становится причиной "заторов" в случаях, когда, например, на один и тот же узел одновременно отсылается несколько потоков данных от разных компьютеров-отправителей. Если возложить задачу первоначальной сортировки пакетов на хаб, то эту проблему можно было бы частично решить. Это было проделано, и в результате появилось устройство, названное switch, или коммутатор.

    Switch полностью заменяет в структуре локальной сети 10BaseT хаб, да и выглядят эти два устройства практически одинаково, однако принцип работы коммутатора имеет целый ряд существенных различий. Основное различие заключается в том, что встроенное в switch программное обеспечение способно самостоятельно анализировать содержимое пересылаемых по сети блоков данных и обеспечивать прямую передачу информации между любыми двумя из своих портов независимо от всех остальных портов устройства.

    Эту ситуацию можно проиллюстрировать на простом примере. Предположим, у нас имеется коммутатор, оснащенный 16 портами. К порту 1 подключен компьютер А, который передает некую последовательность данных компьютеру С, присоединенному к 16-му порту. В отличие от хаба, получив этот пакет данных, коммутатор не ретранслирует его по всем имеющимся в его распоряжении портам в надежде, что рано или поздно он достигнет адресата, а проанализировав содержащуюся в пакете информацию, передает его непосредственно на 16-й порт. В то же самое время на порт 9 коммутатора приходит блок данных из другого сегмента локальной сети 10BaseT, подключенного к устройству через собственный хаб. Поскольку этот блок адресован компьютеру В, он сразу отправляется на порт 3, к которому тот присоединен.

    Следует понимать, что эти две операции коммутатор выполняет одновременно и независимо друг от друга. Очевидно, что при наличии 16 портов мы можем одновременно направлять через коммутатор 8 пакетов данных, поскольку порты задействуются парами. Таким образом, суммарная пропускная способность данного устройства составит 8 х 10 = 80 Мбит/с, что существенно ускорит работу сети, в то время как на каждом отдельном подключении сохранится стандартное значение 10 Мбит/с. Другими словами, при использовании коммутатора мы уменьшаем время прохождения пакетов через сетевую систему, не увеличивая фактическую скорость соединения.

    Итак, в отличие от концентраторов, осуществляющих широковещательную рассылку всех пакетов, принимаемых по любому из портов, коммутаторы передают пакеты только целевому устройству (адресату). В результате уменьшается трафик и повышается общая пропускная способность, а эти два фактора являются критическими с учетом растущих требований к полосе пропускания сети со стороны современных приложений.

    Коммутация популярна как простой, недорогой метод повышения доступной полосы пропускания сети. Современные коммутаторы нередко поддерживают такие средства, как назначение приоритетов трафика (что особенно важно при передаче в сети речи или видео), функции управления сетью и управление многоадресной рассылкой.

    Приведем некоторые общие характеристики коммутаторов:защита с помощью брандмауэров;

    • кэширование Web-данных, поддержка высокоскоростных гигабитных соединений;
    • расширенные возможности сетевой телефонии;
    • защита настольных компьютеров и сетевое управление;
    • фильтрация многоадресного трафика для более эффективного использования полосы пропускания при работе с видеотрафиком;
    • адаптивная буферизация портов с распределением памяти между буферами портов в реальном времени, обеспечивающая автоматическую оптимизацию производительности в зависимости от сетевого трафика;
    • управление потоками на основе стандартов для обеспечения максимальной производительности и минимизации потерь пакетов при большой загрузке сети;
    • поддержка объединения каналов для создания единого высокоскоростного канала связи с другим коммутатором или магистральной сетью;
    • автоматическое определение полу/полнодуплексного режима на всех портах, обеспечивающее максимальную производительность без ручной настройки;
    • порты 10/100 Мбит/с с автоматическим определением скорости передачи для каждого порта автоматически настраиваются на скорость подключенного устройства;
    • встроенная система контроля и управления позволяет уполномоченным администраторам осуществлять поиск и устранение неисправностей и настройку стека из любого места;
    • поддержка отказоустойчивых соединений, а также дополнительных резервных блоков питания.


    [ http://sharovt.narod.ru/l10.htm]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > networking switch

  • 6 server

    1. телевизионный сервер
    2. сервер (сети и системы связи)
    3. сервер
    4. блок обслуживания

     

    блок обслуживания
    Та часть системы массового обслуживания, в которую поступает поток требований (заявок); может состоять из одного или нескольких «приборов», «каналов«, под которыми понимаются устройства или люди, осуществляющие акт обслуживания. В первом случае Б.о. называется одноканальным, во втором – многоканальным. Блок, где заявка обслуживается только одним «прибором», после чего покидает систему, называется однофазным; Б., в котором каждая заявка последовательно проходит несколько «приборов» – многофазным.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

     

    сервер
    Функциональное устройство, предоставляющее услуги рабочим станциям, персональным компьютерам или другим функциональным устройствам.
    [РД 01.120.00-КТН-228-06]

    сервер
    Компьютер или приложение, предоставляющие услуги, ресурсы или данные клиентскому приложению или компьютеру.
    [ http://www.morepc.ru/dict/]

    Основы клиент-серверных технологий

    Сейчас мы хотим уточнить, что же такое сервер, какие функции он выполняет и какие вообще бывают серверы. Если речь идет о сервере, невольно всплывает в памяти понятие клиента. Все потому, что эти два понятия неразрывно связаны. Объединяет их компьютерная архитектура клиент-сервер. Обычно, когда говорят «сервер», имеют в виду сервер в архитектуре клиент-сервер, а когда говорят «клиент» – имеют в виду клиент в этой же архитектуре. Так что же это за архитектура? Суть ее в том, чтобы разделить функции между двумя подсистемами: клиентом, который отправляет запрос на выполнение каких-либо действий, и сервером, который выполняет этот запрос. Взаимодействие между клиентом и сервером происходит посредством стандартных специальных протоколов, таких как TCP/IP и z39.50. На самом деле протоколов очень много, они различаются по уровням. Мы рассмотрим только протокол прикладного уровня HTTP (чуть позднее), поскольку для решения наших программистских задач нужен только он. А пока вернемся к клиент-серверной архитектуре и разберемся, что же такое клиент и что такое сервер.

    Сервер представляет собой набор программ, которые контролируют выполнение различных процессов. Соответственно, этот набор программ установлен на каком-то компьютере. Часто компьютер, на котором установлен сервер, и называют сервером. Основная функция компьютера-сервера – по запросу клиента запустить какой-либо определенный процесс и отправить клиенту результаты его работы.

    Клиентом называют любой процесс, который пользуется услугами сервера. Клиентом может быть как пользователь, так и программа. Основная задача клиента – выполнение приложения и осуществление связи с сервером, когда этого требует приложение. То есть клиент должен предоставлять пользователю интерфейс для работы с приложением, реализовывать логику его работы и при необходимости отправлять задания серверу.

    Взаимодействие между клиентом и сервером начинается по инициативе клиента. Клиент запрашивает вид обслуживания, устанавливает сеанс, получает нужные ему результаты и сообщает об окончании работы.

    Услугами одного сервера чаще всего пользуется несколько клиентов одновременно. Поэтому каждый сервер должен иметь достаточно большую производительность и обеспечивать безопасность данных.

    Логичнее всего устанавливать сервер на компьютере, входящем в какую-либо сеть, локальную или глобальную. Однако можно устанавливать сервер и на отдельно стоящий компьютер (тогда он будет являться одновременно и клиентом и сервером).

    [ Источник]

    Существует множество типов серверов. Вот лишь некоторые из них.

    • Видеосервер. Такой сервер специально приспособлен к обработке изображений, хранению видеоматериалов, видеоигр и т.п. В связи с этим компьютер, на котором установлен видеосервер, должен иметь высокую производительность и большую память.
    • Поисковый сервер предназначен для поиска информации в Internet.
    • Почтовый сервер предоставляет услуги в ответ на запросы, присланные по электронной почте.
    • Сервер WWW предназначен для работы в Internet.
    • Сервер баз данных выполняет обработку запросов к базам данных.
    • Сервер защиты данных предназначен для обеспечения безопасности данных (содержит, например, средства для идентификации паролей).
    • Сервер приложений предназначен для выполнения прикладных процессов. С одной стороны взаимодействует с клиентами, получая задания, а с другой – работает с базами данных, подбирая необходимые для обработки данные.
    • Сервер удаленного доступа обеспечивает коллективный удаленный доступ к данным.
    • Файловый сервер обеспечивает функционирование распределенных ресурсов, предоставляет услуги поиска, хранения, архивирования данных и возможность одновременного доступа к ним нескольких пользователей.

    Обычно на компьютере-сервере работает сразу несколько программ-серверов. Одна занимается электронной почтой, другая распределением файлов, третья предоставляет web-страницы.

    Тематики

    EN

     

    сервер (сети и системы связи)
    Функциональный узел в сети связи, который предоставляет данные другим функциональным узлам или выдает разрешение на доступ к своим ресурсам другим функциональным узлам, который может быть также логическим подразделом с независимым управлением своей оперативной деятельностью в пределах программного алгоритма и/или оборудования.
    [ ГОСТ Р 54325-2011 (IEC/TS 61850-2:2003)]

    EN

    server
    on a communication network, a functional node that provides data to, or that allows access to its resources by, other functional nodes. A server may also be a logical subdivision, which has independent control of its operation, within the software algorithm (and/or possibly hardware) structure
    [IEC 61850-2, ed. 1.0 (2003-08)]

    Тематики

    EN

     

    телевизионный сервер
    Устройство, предназначенное для записи и воспроизведения цифровых телевизионных видеосигналов и звуковых сигналов вещательного телевидения на магнитные диски.
    [ ГОСТ Р 52210-2004]

    Тематики

    • телевидение, радиовещание, видео

    Обобщающие термины

    EN

    2.60 сервер (server): Процессор, предоставляющий услуги одному или более другому процессору.

    Источник: ГОСТ Р ИСО/МЭК ТО 10032-2007: Эталонная модель управления данными

    3.66 сервер (server): Компьютер, действующий как поставщик некоторых услуг, таких как обработка коммуникаций, обеспечение интерфейса с системой хранения файлов или печатное устройство.

    Источник: ГОСТ Р ИСО/ТО 13569-2007: Финансовые услуги. Рекомендации по информационной безопасности

    3.66 сервер (server): Компьютер, действующий как поставщик некоторых услуг, таких как обработка коммуникаций, обеспечение интерфейса с системой хранения файлов или печатное устройство.

    Источник: ГОСТ Р ИСО ТО 13569-2007: Финансовые услуги. Рекомендации по информационной безопасности

    3.1.29 сервер (server): Программный объект, экспортирующий ресурс имеющихся данных. Программный объект устанавливается на физическое устройство. Компьютер, подключенный к сети и предоставляющий услуги другим устройствам, работающим в этой сети.

    Источник: ГОСТ Р 53531-2009: Телевидение вещательное цифровое. Требования к защите информации от несанкционированного доступа в сетях кабельного и наземного телевизионного вещания. Основные параметры. Технические требования оригинал документа

    Англо-русский словарь нормативно-технической терминологии > server

  • 7 function

    1. шина магистрали, несущая Информацию, определяющую действие во время интерфейсной операции
    2. часть команды, определяющая действия адресуемого абонента (во время интерфейсной операции)
    3. функция (сети и системы связи)
    4. функция
    5. функционирование
    6. направления деятельности системы управления
    7. мн. должностные обязанности
    8. зависимости

     

    мн. должностные обязанности

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    направления деятельности системы управления
    Пять основных направлений в командной системе по устранению последствий инцидента, то есть командование, действия, планирование, логистика и финансово-административное управление.
    Примечание
    Термин "функционирование" также используют при описании сопутствующей активности, например планирования.
    [ ГОСТ Р 53389-2009]

    Тематики

    Обобщающие термины

    EN

     

    функционирование
    Корректное выполнение предназначения – «компьютер функционирует».
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    EN

    function
    To perform the intended purpose correctly, as in «The computer is functioning».
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    Тематики

    EN

     

    функция
    Команда или группа людей, а также инструментарий или другие ресурсы, которые они используют для выполнения одного или нескольких процессов или деятельности. Например, служба поддержки пользователей. Этот термин также имеет другое значение: предназначение конфигурационной единицы, человека, команды, процесса или ИТ-услуги. Например, одна из функций услуги электронной почты может заключаться в сохранении и пересылке исходящей почты, тогда как функция бизнес-процесса может заключаться в отправке товаров заказчикам.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    функция
    Синоним термина функциональное направление деятельности.
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    функция
    1. Зависимая переменная величина; 2. Соответствие y=f(x) между переменными величинами, в силу которого каждому рассматриваемому значению некоторой величины x (аргумента или независимой переменной) соответствует определенное значение другой величины y (зависимой переменной или Ф. в значении 1.). Ф. задана, если известен закон, определяющий такое соответствие. На практике она задается формулой, таблицей или графиком (есть и другие способы, например, алгоритмический — см. Алгоритм). При построении графика функции анализируются такие ее свойства, как четность или нечетность, нулевые значения, периодичность (см. Периодическая функция), монотонность (см. Монотонная функция), наличие асимптоты и другие. Важны еще два часто употребляемых понятия: функция, заданная в виде уравнения f(x,y) =0, неразрешенного относительно y, называется неявной; функция, заданная в виде y= f(g(x), то есть функция функции, называется сложной Ф. или, иначе, суперпозицией функций g и f. (См. также Функционал). Сложную функцию часто записывают в виде y=f(u), где u=g(x), при этом u называют промежуточным аргументом. Множество значений аргументов функции X (x ? X) называется областью определения функции, а, соответственно, множество Y — областью значений функции или областью изменения функции. См. также Отображение. В различных экономических приложениях применяются (и рассматриваются в словаре), следующие функции: Взвешивающие, Дифференцируемые, Гладкие, Кусочно-линейные, Кусочно-непрерывные, Линейные, Нелинейные, Непрерывные, Сепарабельные, Экспоненты и др. См. также: Вектор-функция, Гессиан, Мультипликативная форма представления функции, Производная, Рекурсия, Частная производная, Эластичность функции, Якобиан, Интеграл.
    [ http://slovar-lopatnikov.ru/]

    EN

    function
    A team or group of people and the tools or other resources they use to carry out one or more processes or activities – for example, the service desk. The term also has two other meanings: • An intended purpose of a configuration item, person, team, process or IT service. For example, one function of an email service may be to store and forward outgoing mails, while the function of a business process may be to despatch goods to customers.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    function
    Another term for functional area.
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    Тематики

    EN

     

    функция (сети и системы связи)
    Задача, выполняемая системой автоматизации подстанции, то есть прикладными функциями.
    Примечание 1. Обычно функции обмениваются данными с другими функциями. Функции выполняются интеллектуальными электронными устройствами (физическими устройствами).
    Примечание 2. Функция может быть разделена на части, которые резидентно находятся в интеллектуальных электронных устройствах, но сообщаются друг с другом и с частями других функций. Эти сообщающиеся части называются логическими узлами.
    Примечание 3. В контексте стандартов серии "Сети и системы связи на подстанциях" декомпозиция функций или степень их детализации определяется только характером связи. Это означает, что все функции состоят из логических узлов, которые обмениваются данными.
    [ ГОСТ Р 54325-2011 (IEC/TS 61850-2:2003)]

    EN

    function(s)
    task(s) performed by the substation automation system i.e. by application functions. Generally, functions exchange data with other functions. Details are dependant on the functions involved. Functions are performed by IEDs (physical devices). A function may be split into parts residing in different IEDs but communicating with each other (distributed function) and with parts of other functions. These communicating parts are called logical nodes.

    In the context of this standard, the decomposition of functions or their granularity is ruled by the communication behaviour only. Therefore, all functions considered consist of logical nodes that exchange data. Functions without an explicit reference to logical nodes mean only that in the actual context, the logical node modelling of these functions is of no importance to the standard
    [IEC 61850-2, ed. 1.0 (2003-08)]

    Тематики

    EN

     

    часть команды, определяющая действия адресуемого абонента (во время интерфейсной операции)

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

     

    шина магистрали, несущая Информацию, определяющую действие во время интерфейсной операции

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

    2.1 функция (function): Реализация в программе алгоритма, по которому пользователь или программа могут частично или полностью выполнять решаемую задачу.

    Примечания

    1 Пользователю нет необходимости вызывать функцию (например, автоматическое резервирование или сохранение данных).

    2 Определение функции в настоящем стандарте уже, чем в ИСО/МЭК 2382-14 [9] (в части определений отказа, сбоя, эксплуатации и надежности), но шире аналогичных определений в ИСО 2382-2 [10] и ИСО 2382-15 [11].

    Источник: ГОСТ Р ИСО/МЭК 12119-2000: Информационная технология. Пакеты программ. Требования к качеству и тестирование оригинал документа

    3.7 функция (function): Конкретная цель или предназначенная для выполнения задача, которая может быть установлена или описана без ссылок на физические средства ее достижения.

    Источник: ГОСТ Р МЭК 61226-2011: Атомные станции. Системы контроля и управления, важные для безопасности. Классификация функций контроля и управления оригинал документа

    Англо-русский словарь нормативно-технической терминологии > function

  • 8 système de conditionnement d'air

    1. система кондиционирования воздуха

     

    система кондиционирования воздуха
    Совокупность воздухотехнического оборудования, предназначенная для кондиционирования воздуха в помещениях
    [ ГОСТ 22270-76]

    система кондиционирования воздуха

    Совокупность технических средств для обработки и распределения воздуха, а также автоматического регулирования его параметров с дистанционным управлением всеми процессами
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    система кондиционирования воздуха

    Комбинация всех компонент, необходимых для обработки воздуха, в процессе которой осуществляется контроль или понижение температуры, возможно, в комбинации с контролем вентиляции, влажности и чистоты воздуха.
    [ДИРЕКТИВА 2002/91/ЕС ЕВРОПЕЙСКОГО ПАРЛАМЕТА И СОВЕТА от 16 декабря 2002 г. по энергетическим характеристикам зданий]


    КЛАССИФИКАЦИЯ



    Классификация систем кондиционирования воздуха

    М. Г. Тарабанов, директор НИЦ «ИНВЕНТ», канд. техн. наук, вице-президент НП «АВОК», лауреат премии НП «АВОК» «Медаль имени И. Ф. Ливчака», «Медаль имени В. Н. Богословского», otvet@abok.ru

    Общие положения

    Краткий, но достаточно полный обзор истории развития кондиционирования воздуха представлен в работе А. И. Липы [1], поэтому отметим только несколько моментов. Родоначальником техники кондиционирования воздуха в ее современном понимании считается американский инженер Виллис Хэвилэнд Кэрриер (Willis Haviland Carrier), который в 1902 году в Нью-Йорке в Бруклинской типографии применил поверхностный водяной воздухоохладитель с вентилятором для получения летом в помещении температуры +26,5 °C и относительной влажности 55 %. Вода охлаждалась в аммиачной холодильной машине. Зимой для увлажнения внутреннего воздуха до 55 % использовался водяной пар от бойлера.
    Термин «кондиционирование воздуха» был предложен в 1906 году Стюартом Уорреном Крамером (Stuart Warren Cramer).
    В отечественной практике некоторые авторы применяют термин «кондиционирование микроклимата». Заметим, что этот термин отличается от «кондиционирования воздуха», так как включает в себя дополнительные факторы, не связанные с состоянием воздушной среды в помещении (шум, инсоляция и др.).
    К сожалению, несмотря на солидный возраст термин «кондиционирование воздуха» не получил четкого определения в современных отечественных нормативных документах. Для устранения этого пробела сформулируем: «Кондиционирование воздуха – это создание и автоматическое поддержание в обслуживаемом помещении или технологическом объеме требуемых параметров и качества воздуха независимо от внутренних возмущений и внешних воздействий». К параметрам воздуха относятся: температура, относительная влажность или влагосодержание и подвижность. Качество воздуха включает в себя газовый состав, запыленность, запахи, аэроионный состав, т. е. более широкий круг показателей, чем термин «чистота», используемый в [2].
    Комплекс оборудования, элементов и устройств, с помощью которых обеспечивается кондиционирование воздуха в обслуживаемых помещениях, называется системой кондиционирования воздуха (СКВ).
    Приведенное выше определение системы кондиционирования воздуха по смыслу полностью совпадает с определением ASHRAE: «”air-conditioning system” – комплекс оборудования для одновременной обработки и регулирования температуры, влажности, чистоты воздуха и распределения последнего в соответствии с заданными требованиями» [3].
    Общепринятого, устоявшегося мнения, что следует включать в состав СКВ, к сожалению, нет.
    Так, например, по мнению О. Я. Кокорина [4] СКВ может включать в себя:

    • установку кондиционирования воздуха (УКВ), обеспечивающую необходимые кондиции воздушной среды по тепловлажностным качествам, чистоте, газовому составу и наличию запахов;
    • средства автоматического регулирования и контроля за приготовлением воздуха нужных кондиций в УКВ, а также для поддержания в обслуживаемом помещении или сооружении постоянства заданных кондиций воздуха;
    • устройства для транспортирования и распределения кондиционированного воздуха;
    • устройства для транспортирования и удаления загрязненного внутреннего воздуха;
    • устройства для глушения шума, вызываемого работой элементов СКВ;
    • устройства для приготовления и транспортирования источников энергии, необходимых для работы аппаратов в СКВ.

    В зависимости от конкретных условий некоторые составные части СКВ могут отсутствовать.
    Однако согласиться с отдельными пунктами предложенного состава СКВ нельзя, так как если следовать логике автора [4], то в состав СКВ должны войти и системы оборотного водоснабжения, водопровода и канализации, ИТП и трансформаторные, которые также необходимы для работы аппаратов в СКВ.
    Достаточно полное представление о структуре СКВ дает разработанная во ВНИИкондиционере «Блок-схема системы кондиционирования воздуха» (рис. 1) [5].

    4804

    Включенные в эту блок-схему подсистемы обработки воздуха по своему функциональному назначению делятся на блоки:

    • основной обработки и перемещения: Б1.1 – приемный, Б1.8 – очистки, Б1.2 – сухого (первого) подогрева, Б1.3 – охлаждения, Б1.6 – тепловлажностной обработки, Б1.9 – перемещения приточного воздуха;
    • дополнительной обработки и перемещения: Б2.1 – утилизации, Б2.2 – предварительного подогрева, Б2.3 – доводки общей (второй подогрев, дополнительное охлаждение), Б2.4 – зональной доводки, Б2.5 – местной доводки (эжекционные доводчики и др.), Б2.7 – шумоглушения, Б2.8 – перемещения рециркуляционного воздуха;
    • специальной обработки: Б5.5 – тонкой очистки;
    • воздушной сети: Б4.2 – воздухораспределительных устройств, Б4.3 – вытяжных устройств, Б4.5 – воздуховодов;
    • автоматизации – арматуры – Б3.1.

    Помимо этих блоков в СКВ может входить система холодоснабжения (снабжение электроэнергией и теплом осуществляется, как правило, централизованно). Ее включение в состав СКВ, видимо, относится к автономным кондиционерам (см. далее).
    Для определения состава оборудования, входящего в СКВ, и границ раздела целесообразно воспользоваться делением на разделы, которое сложилось в практике проектирования.
    В частности, при выполнении проектов кондиционирования воздуха достаточно серьезных объектов обычно выделяют в самостоятельные разделы: теплоснабжение СКВ; холодоснабжение и холодильные центры; электроснабжение; автоматизация; водоснабжение, в том числе оборотное, канализация и дренаж.
    Причем по каждому из разделов составляют свою спецификацию, в которую включено оборудование, материалы и арматура, относящиеся к своему конкретному разделу.
    Таким образом, в состав СКВ следует включить:

    • УКВ, предназначенную для очистки и тепловлажностной обработки и получения необходимого качества воздуха и его транспортировки по сети воздуховодов до обслуживаемого помещения или технического объема;
    • сеть приточных воздуховодов с воздухораспределителями, клапанами и регулирующими устройствами;
    • вытяжной вентилятор и сеть вытяжных и рециркуляционных воздуховодов с сетевым оборудованием;
    • сеть фреоновых трубопроводов для сплит-систем и VRV-систем с кабелями связи наружных блоков с внутренними;
    • фэнкойлы, эжекционные доводчики, моноблоки, холодные и теплые потолки и балки и др. доводчики для охлаждения и (или) нагревания непосредственно внутреннего воздуха;
    • оборудование для утилизации теплоты и холода;
    • дополнительные воздушные фильтры, шумоглушители и другие элементы.

    И даже систему автоматики, входящую в СКВ как бы по определению, целесообразно выделить отдельно, так как ее проектируют инженеры другой специальности, хотя и по заданию так называемых технологов СКВ.
    Границей СКВ и систем теплохолодоснабжения можно считать узлы регулирования, а границей электроснабжения и автоматики – электрические щиты и щиты управления, которые в последнее время очень часто делают совмещенными.

    Классификация систем кондиционирования воздуха

    Проблемам классификации СКВ в большей или меньшей степени уделяли внимание практически все авторы учебников и монографий по кондиционированию воздуха. Вот что написал по этому вопросу известный специалист, доктор техн. наук А. А. Рымкевич [6]: «Анализ иерархической структуры самих СКВ прежде всего требует их классификации и только затем их декомпозиции на подсистемы. …Однако для СКВ, решения которых базируются на учете большого числа данных, разработать такую классификацию всегда сложно. Не случайно в литературе нет единого мнения по данному вопросу, и поэтому многие известные авторы… предложили различные методы классификации».
    Предложенная А. А. Рымкеви-чем концепция выбора признаков классификации СКВ сформулирована очень точно, и с ней нельзя не согласиться. Проблема состоит в том, как этой концепцией воспользоваться и какие признаки считать определяющими, а какие вторичными, и как точно сформулировать эти признаки.
    В начале восьмидесятых годов прошлого века наиболее полная классификация СКВ была предложена в работе Б. В. Баркалова и Е. Е. Карписа [7].
    Основные признаки этой классификации с некоторыми дополнениями использованы и в недавно изданной монографии А. Г. Сотникова [8] и в других работах, однако некоторые формулировки отдельных признаков требуют уточнения и корректировки.
    Например, для опытных специалистов не составит труда разделить СКВ на центральные и местные, посмотрим, как признак такого деления сформулирован разными авторами.
    Б. В. Баркалов, Е. Е. Карпис пишут [7]: «В зависимости от расположения кондиционеров по отношению к обслуживаемым помеще-ниям СКВ делятся на центральные и местные». А. Г. Сотников [8] считает необходимым дополнить: «Деление на местные и центральные СКВ учитывает как место установки кондиционера, так и группировку помещений по системам», а О. Я. Кокорин уточняет: «По характеру связи с обслуживаемым помещением можно подразделить СКВ на три вида: центральные, местные и центрально-местные. Центральные СКВ характеризуются расположением УКВ в удалении от обслуживаемых объектов и наличием приточных воздуховодов значительной протяженности. Местные СКВ характеризуются расположением УКВ в самом обслуживаемом помещении или в непосредственной близости от него, при отсутствии (или наличии весьма коротких) приточных воздуховодов. Центрально-местные СКВ характеризуются как наличием УКВ в удалении от обслуживаемых объектов, так и местных УКВ, располагаемых в самих помещениях или в непосредственной близости от них».
    Трудно понять, что имеется в виду под группировкой помещений по системам и что считается протяженными или весьма короткими воздуховодами. Например, кондиционеры, обслуживающие текстильные цеха на Волжском заводе синтетического волокна, имеют производительность по воздуху до 240 м3/ч и расположены рядом с обслуживаемыми помещениями, то есть непосредственно за стенами, но никто из указанных выше авторов не отнес бы их к местным системам.
    Несколько иной признак клас-сификации предложил Е. В. Стефанов [9]: «… по степени централизации – на системы центральные, обслуживающие из одного центра несколько помещений, и местные, устраиваемые для отдельных помещений и располагающиеся, как правило, в самих обслуживаемых помещениях».
    К сожалению, и эта формулировка является нечеткой, так как одно большое помещение могут обслуживать несколько центральных кондиционеров, а группу небольших помещений – один местный кондиционер.
    Фактически в отечественной практике негласно действовал совсем другой признак классификации: все кондиционеры, выпускавшиеся Харьковским заводом «Кондиционер», кроме шкафных, считались центральными, а все кондиционеры, выпускавшиеся Домодедовским заводом «Кондиционер», кроме горизонтальных производительностью 10 и 20 тыс. м3/ч, – относились к местным.
    Конечно, сегодня такое деление выглядит смешным, а между тем в нем был определенный здравый смысл.
    Известно, что в местных системах используются готовые агрегаты полной заводской сборки обычно шкафного типа со стандартным набором тепломассообменного оборудования с уже готовыми, заданными заранее техническими характеристиками, поэтому местные УКВ не проектируют, а подбирают для конкретного обслуживаемого помещения или группы небольших однотипных помещений.
    Максимальная производительность местных систем по воздуху обычно не превышает 20–30 тыс. м3/ч.
    Центральные кондиционеры могут быть также полной заводской сборки или собираются на месте монтажа, причем технические характеристики всех элементов, включая воздушные фильтры, вентиляторы и тепломассообменное оборудование, задаются производителями в очень широких пределах, поэтому такие кондиционеры не подбирают, а проектируют, а затем изготавливают в соответствии с бланком-заказом для конкретного объекта.
    Обычно центральные кондиционеры собирают в виде горизонтальных блоков, причем производительность таких кондиционеров по воздуху значительно больше, чем у местных и достигает 100–250 тыс. м3/ч у разных фирм-производителей.
    Очевидно, что отмеченные признаки относятся к УКВ, но их можно использовать и для классификации СКВ, например, СКВ с центральной УКВ – центральная СКВ, а с местной УКВ – местная СКВ. Такой подход не исключает полностью признаки, предложенные другими авторами, а дополняет их, исключая некоторые неопределенности, типа протяженности воздуховодов и др.
    Для дальнейшей классификации СКВ рассмотрим схему ее функционирования.
    На параметры внутреннего воздуха в обслуживаемом помещении или технологическом объеме оказывают воздействие внутренние возмущения, то есть изменяющиеся тепло- и влаговыделения, а также внешние факторы, например, изменение температуры и влагосодержания наружного воздуха, воздействие на остекленный фасад прямой солнечной радиации в разное время суток и др.
    Задача СКВ состоит в том, чтобы улавливать и своевременно устранять последствия этих возмущений и воздействий для сохранения параметров внутреннего воздуха в заданных пределах, используя систему автоматического регулирования и необходимый набор оборудования (воздухоохладители, воздухонагреватели, увлажнители и др.), а также источники теплоты и холода.
    Поддерживать требуемые параметры внутреннего воздуха можно изменяя параметры или расход приточного воздуха, подаваемого в помещение извне, или с помощью аппаратов, установленных непосредственно в помещении, так называемых доводчиков.
    Сегодня в качестве доводчиков используют внутренние блоки сплит-систем и VRV-систем, фэнкойлы, моноблоки, охлаждаемые потолки и балки и другие элементы.
    К сожалению, в классификации [7] вместо понятия «доводчики» используется понятие «водовоздушные СКВ», а в классификации [8] дополнительно вводится термин «водо- и фреоновоздушная СКВ». С подобными предложениями нельзя согласиться в принципе, так как их авторы вольно или невольно присваивают сплит-системам или фэнкойлам статус систем кондиционирования воздуха, которыми они не являются и, естественно, не могут входить в классификацию СКВ, поскольку являются всего лишь местными охладителями или нагревателями, то есть не более чем доводчиками.
    Справедливости ради отметим, что Б. В. Баркалов начинает описание центральных водовоздушных систем очень точной фразой: «В каждое помещение вводится наружный воздух, приготовленный в центральном кондиционере. Перед выпуском в помещение он смешивается с воздухом данного помещения, предварительно охлажденным или нагретым в теплообменниках кондиционеров?доводчиков, снабжаемых холодной и горячей водой». Приведенная цитата показывает, что автор хорошо понимает неопределенность предложенного им признака классификации и поэтому сразу поясняет, что он имеет в виду под центральными водовоздушными системами.
    Системы без доводчиков могут быть прямоточными, когда в помещение подается обработанный наружный воздух, и с рециркуляцией, когда к наружному воздуху подмешивают воздух, забираемый из помещения. Кроме того, технологические СКВ, обслуживающие помещения или аппараты без пребывания людей, могут работать без подачи наружного воздуха со 100 % рециркуляцией. В зависимости от алгоритма работы СКВ различают системы с постоянной рециркуляцией, в которых соотношение количества наружного и рециркуляционного воздуха во время работы не изменяется, и СКВ с переменной рециркуляцией, в которых количество наружного воздуха может изменяться от 100 % до некоторого нормируемого минимального уровня.
    Кроме того, системы с рециркуляцией могут быть одновентиляторными и двухвентиляторными. В первых системах подача приточного воздуха в помещение, а также забор наружного и рециркуляционного воздуха осуществляется приточным вентилятором УКВ. Во втором случае для удаления воздуха из помещения и подачи его на рециркуляцию или на выброс применяют дополнительный вытяжной вентилятор.
    Независимо от схемы компоновки и устройства отдельных элементов СКВ подразделяют также по их назначению. Многие авторы делят СКВ на комфортные, технологические и комфортно-технологические. Более удачной и полной представляется классификация СКВ по назначению на эргономической основе, разработанная ВНИИкондиционером [5].
    Определено, что СКВ могут выполнять одну из трех функций обслуживания: машин; машин + людей; людей.
    1-я группа (символ «машина») определена как технологические СКВ. СКВ этой группы обслуживают технологические аппараты, камеры, боксы, машины и т. п., то есть применяются в тех случаях, когда условия воздушной среды диктуются обеспечением работоспособности технологического оборудования. При этом параметры воздушной среды могут отличаться от тех, которые определяются санитарно-гигиеническими нормами.
    1-я группа имеет две модификации:

    • Подгруппа 1–1 включает в себя кондиционируемые объекты, полностью исключающие возможность пребывания в них человека, то есть это системы технологического охлаждения, обдува электронных блоков вычислительных машин, шахты обдува волокна прядильных машин и т. п.
    • Подгруппа 1–2 включает в себя кондиционируемые объекты: технологические аппараты (машины, камеры, боксы) и помещения с особыми параметрами воздушной среды (калориметрического, экологического и другого назначения), в которых человек отсутствует или находится эпизодически (для снятия показаний приборов, изменения режима работы и т. д.).

    Если для группы 1–1 отсутствуют какие-либо ограничения по параметрам и составу воздушной среды, то для объектов подгруппы 1–2 газовый состав воздушной среды должен находиться в пределах, установленных ГОСТ.
    2-я группа (символ «машина + человек») определена как технологически комфортные СКВ. СКВ этой группы обслуживают производственные помещения, в которых длительно пребывают люди.
    2-я группа имеет три модификации:

    • Подгруппа 2–1. Технологически комфортные СКВ обеспечивают условия нормального осуществления технологических процессов как для производств, в которых затруднено или практически невозможно получение продукции без поддержания определенных параметров воздушной среды, так и для производств, в которых колебания параметров воздуха существенно влияют на качество продукции и величину брака.
    • Для этих помещений СКВ устраивается в первую (и основную) очередь по требованиям технологии, однако в связи с наличием в этих помещениях людей, параметры КВ устанавливают с учетом требований санитарно-гигиенических норм.
    • Подгруппа 2–2. СКВ создаются для исключения дискомфортных условий труда при тяжелых режимах работы людей (кабины крановщиков мостовых кранов металлургических заводов и ТЭЦ, кабины строительно-дорожных машин и т. д.). Производственные или экономические аспекты для этих установок имеют второстепенное значение.
    • Подгруппа 2–3. СКВ обеспечивают в производственных помещениях комфортные условия труда, способствующие повышению производительности труда, улучшению проведения основных технологических режимов, снижению заболеваемости, уменьшению эксплуатационных затрат и т. п.

    3-я группа (символ «люди») определена как комфортные СКВ, обеспечивающие санитарно-гигиенические условия труда, отдыха или иного пребывания людей в помещениях гражданских зданий, то есть вне промышленного производства.
    Эта группа имеет две модификации:

    • Подгруппа 3–1. СКВ обслуживают помещения общественных зданий, в которых для одной части людей пребывание в них кратковременно (например, покупатели в универмаге), а для другой – длительно (например, продавцы в этом же универмаге).
    • Подгруппа 3–2. СКВ обеспечивают оптимальные условия пребывания людей в жилых помещениях.

    В классификацию ВНИИконди-ционера необходимо ввести еще одну группу – медицинские СКВ. Очевидно, что СКВ, обслуживающие операционные, реанимационные или палаты интенсивной терапии, никак нельзя считать комфортными, а чтобы отнести их к технологическим, надо в качестве «машины» рассматривать самого человека, что просто глупо.
    Медицинские СКВ должны иметь две подгруппы:

    • Подгруппа 4–1. СКВ обслуживают операционные, реанимационные и т. п. помещения.
    • Подгруппа 4–2. СКВ обеспечивают требуемые параметры воздуха в палатах, кабинетах врачей, процедурных и т. п.

     

    4805

    Для завершения классификации СКВ рассмотрим еще несколько признаков.
    По типу системы холодоснабжения различают автономные и неавтономные СКВ. В автономных источник холода встроен в кондиционер, в неавтономных – источником холода является отдельный холодильный центр. Кроме того, в автономных кондиционерах в воздухоохладитель может подаваться кипящий хладон или жидкий промежуточный хладоноситель (холодная вода, растворы). Заметим, что на многих объектах мы использовали схему с подачей хладона в воздухоохладитель центрального кондиционера от расположенной рядом холодильной машины или внешнего блока VRV.
    По способу компенсации изменяющихся тепловых и (или) влажностных возмущений в обслуживаемом помещении различают СКВ с постоянным расходом воздуха (CAV) – системы, в которых внутренние параметры поддерживают изменяя температуру и влажность приточного воздуха (качественное регулирование), и системы с переменным расходом воздуха (VAV) – системы с количественным регулированием.
    По числу воздуховодов для подачи кондиционированного воздуха в помещенияСКВ делятся на одноканальные и двухканальные, при этом приточный воздух в каждом канале имеет разную температуру и влажность, что позволяет, изменяя соотношение приточного воздуха, подаваемого через каждый канал, поддерживать требуемые параметры в обслуживаемом помещении.
    По числу точек стабилизации одноименного параметра (t; φ)в большом помещении или группе небольших помещений различают одно- и многозональные СКВ.
    –это СКВ с местными доводчиками. В этих СКВ центральная или местная УКВ подает в помещение санитарную норму наружного воздуха, даже не обязательно обработанного, а местные доводчики обеспечивают поддержание в помещении требуемых параметров воздуха (температуры, относительной влажности и подвижности).
    Сегодня в качестве местных доводчиков применяют: внутренние блоки сплит-систем или VRV-систем; фэнкойлы (двух- или четырехтрубные); моноблоки (напольные, потолочные или настенные); эжекционные доводчики; местные увлажнители воздуха; охлаждаемые и нагреваемые потолки; охлаждающие балки (пассивные и активированные).
    Все указанные доводчики сами по себе не являются кондиционерами, хотя их и называют так продавцы оборудования.
    Известно, что некоторые фирмы работают над созданием, например, фэнкойлов или сплит-систем, подающих в помещение наружный воздух. Но, если это и произойдет в массовом масштабе, то ничего страшного с классификацией не случится, просто это оборудование получит статус местных кондиционеров.
    Блок-схема рассмотренной классификации СКВ приведена на рис. 2.
    Помимо рассмотренных признаков в схему на рис. 2 включен еще один: наличие утилизаторов теплоты и холода, которые могут быть как в центральных, так и в местных СКВ. Причем необходимо различать системы утилизации типа воздух-воздух, к которым относятся схемы с промежуточным теплоносителем, с пластинчатыми теплообменниками* и с регенеративными вращающимися и переключаемыми теплообменниками, а также системы утилизации теплоты оборотной воды и теплоты обратного теплоносителя систем централизованного теплоснабжения и систем технологического жидкостного охлаждения.

    Литература

    1. Липа А. И. Кондиционирование воздуха. Основы теории. Совре-менные технологии обработки воздуха. – Одесса: Издательство ВМВ, 2010.
    2. СНиП 41–01–2003. Отопление, вентиляция, кондиционирование. М.: Госстрой России. – 2004.
    3. Англо-русский терминологический словарь по отоплению, вентиляции, кондиционированию воздуха и охлаждению. М.: Изд-во «АВОК-ПРЕСС», 2002.
    4. Кокорин О. Я. Энергосберегаю-щие системы кондиционирования воздуха. ООО «ЛЭС». – М., 2007.
    5. Кондиционеры. Каталог-спра-воч-ник ЦНИИТЭстроймаш. – М., 1981.
    6. Рымкевич А. А. Системный анализ оптимизации общеобменной вентиляции и кондиционирования воздуха. Изд. 1. – М.: Стройиздат, 1990.
    7. Баркалов Б. В., Карпис Е. Е. Кондиционирование воздуха в промышленных, общественных и жилых зданиях. Изд. 2. – М.: Стройиздат, 1982.
    8. Сотников А. Г. Процессы, аппараты и системы кондиционирования воздуха и вентиляции. Т. 1. ООО «АТ». – С.-Петербург, 2005.
    9. Стефанов Е. В. Вентиляция и кондиционирование воздуха. – С.-Петербург: Изд-во «АВОК-Северо-Запад», 2005.

    [ http://www.abok.ru/for_spec/articles.php?nid=5029]

    Тематики

    EN

    DE

    FR

    Франко-русский словарь нормативно-технической терминологии > système de conditionnement d'air

  • 9 Klimaanlage

    1. система кондиционирования воздуха
    2. кондиционирование воздуха (в туристических услугах)
    3. кондиционер воздуха в помещении
    4. камера кондиционирования

     

    камера кондиционирования
    Ндп климатизационная камера
    Камера с установленными температурой и влажностью с целью стабилизации физико-механических показателей выдерживаемых в них древесностружечных плит.
    [ ГОСТ 19506-74]

    Недопустимые, нерекомендуемые

    Тематики

    • плиты древесноволокн. и древесностружеч.

    EN

    DE

     

    кондиционер воздуха в помещении
    Ндп. климатизер
    Агрегат для кондиционирования воздуха в помещении.
    Примечание. Кондиционер воздуха, работающий на наружном воздухе, называется прямоточным, на внутреннем воздухе - рециркуляционным, на смеси наружного и внутреннего воздуха - с рециркуляцией.
    [ ГОСТ 22270-76]

    кондиционер
    Агрегат, предназначенный для кондиционирования воздуха в помещении
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    Недопустимые, нерекомендуемые

    Тематики

    Синонимы

    EN

    DE

    FR

     

    кондиционирование воздуха
    Искусственная система индивидуальной или централизованной регулировки температуры воздуха, в последнем случае регулировка температуры недоступна для проживающих.
    Примечание
    В последнем случае в номерах отсутствует термостат для индивидуальной регулировки температуры воздуха.
    [ ГОСТ Р 53423-2009]


    Тематики

    EN

    DE

    FR

     

    система кондиционирования воздуха
    Совокупность воздухотехнического оборудования, предназначенная для кондиционирования воздуха в помещениях
    [ ГОСТ 22270-76]

    система кондиционирования воздуха

    Совокупность технических средств для обработки и распределения воздуха, а также автоматического регулирования его параметров с дистанционным управлением всеми процессами
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    система кондиционирования воздуха

    Комбинация всех компонент, необходимых для обработки воздуха, в процессе которой осуществляется контроль или понижение температуры, возможно, в комбинации с контролем вентиляции, влажности и чистоты воздуха.
    [ДИРЕКТИВА 2002/91/ЕС ЕВРОПЕЙСКОГО ПАРЛАМЕТА И СОВЕТА от 16 декабря 2002 г. по энергетическим характеристикам зданий]


    КЛАССИФИКАЦИЯ



    Классификация систем кондиционирования воздуха

    М. Г. Тарабанов, директор НИЦ «ИНВЕНТ», канд. техн. наук, вице-президент НП «АВОК», лауреат премии НП «АВОК» «Медаль имени И. Ф. Ливчака», «Медаль имени В. Н. Богословского», otvet@abok.ru

    Общие положения

    Краткий, но достаточно полный обзор истории развития кондиционирования воздуха представлен в работе А. И. Липы [1], поэтому отметим только несколько моментов. Родоначальником техники кондиционирования воздуха в ее современном понимании считается американский инженер Виллис Хэвилэнд Кэрриер (Willis Haviland Carrier), который в 1902 году в Нью-Йорке в Бруклинской типографии применил поверхностный водяной воздухоохладитель с вентилятором для получения летом в помещении температуры +26,5 °C и относительной влажности 55 %. Вода охлаждалась в аммиачной холодильной машине. Зимой для увлажнения внутреннего воздуха до 55 % использовался водяной пар от бойлера.
    Термин «кондиционирование воздуха» был предложен в 1906 году Стюартом Уорреном Крамером (Stuart Warren Cramer).
    В отечественной практике некоторые авторы применяют термин «кондиционирование микроклимата». Заметим, что этот термин отличается от «кондиционирования воздуха», так как включает в себя дополнительные факторы, не связанные с состоянием воздушной среды в помещении (шум, инсоляция и др.).
    К сожалению, несмотря на солидный возраст термин «кондиционирование воздуха» не получил четкого определения в современных отечественных нормативных документах. Для устранения этого пробела сформулируем: «Кондиционирование воздуха – это создание и автоматическое поддержание в обслуживаемом помещении или технологическом объеме требуемых параметров и качества воздуха независимо от внутренних возмущений и внешних воздействий». К параметрам воздуха относятся: температура, относительная влажность или влагосодержание и подвижность. Качество воздуха включает в себя газовый состав, запыленность, запахи, аэроионный состав, т. е. более широкий круг показателей, чем термин «чистота», используемый в [2].
    Комплекс оборудования, элементов и устройств, с помощью которых обеспечивается кондиционирование воздуха в обслуживаемых помещениях, называется системой кондиционирования воздуха (СКВ).
    Приведенное выше определение системы кондиционирования воздуха по смыслу полностью совпадает с определением ASHRAE: «”air-conditioning system” – комплекс оборудования для одновременной обработки и регулирования температуры, влажности, чистоты воздуха и распределения последнего в соответствии с заданными требованиями» [3].
    Общепринятого, устоявшегося мнения, что следует включать в состав СКВ, к сожалению, нет.
    Так, например, по мнению О. Я. Кокорина [4] СКВ может включать в себя:

    • установку кондиционирования воздуха (УКВ), обеспечивающую необходимые кондиции воздушной среды по тепловлажностным качествам, чистоте, газовому составу и наличию запахов;
    • средства автоматического регулирования и контроля за приготовлением воздуха нужных кондиций в УКВ, а также для поддержания в обслуживаемом помещении или сооружении постоянства заданных кондиций воздуха;
    • устройства для транспортирования и распределения кондиционированного воздуха;
    • устройства для транспортирования и удаления загрязненного внутреннего воздуха;
    • устройства для глушения шума, вызываемого работой элементов СКВ;
    • устройства для приготовления и транспортирования источников энергии, необходимых для работы аппаратов в СКВ.

    В зависимости от конкретных условий некоторые составные части СКВ могут отсутствовать.
    Однако согласиться с отдельными пунктами предложенного состава СКВ нельзя, так как если следовать логике автора [4], то в состав СКВ должны войти и системы оборотного водоснабжения, водопровода и канализации, ИТП и трансформаторные, которые также необходимы для работы аппаратов в СКВ.
    Достаточно полное представление о структуре СКВ дает разработанная во ВНИИкондиционере «Блок-схема системы кондиционирования воздуха» (рис. 1) [5].

    4804

    Включенные в эту блок-схему подсистемы обработки воздуха по своему функциональному назначению делятся на блоки:

    • основной обработки и перемещения: Б1.1 – приемный, Б1.8 – очистки, Б1.2 – сухого (первого) подогрева, Б1.3 – охлаждения, Б1.6 – тепловлажностной обработки, Б1.9 – перемещения приточного воздуха;
    • дополнительной обработки и перемещения: Б2.1 – утилизации, Б2.2 – предварительного подогрева, Б2.3 – доводки общей (второй подогрев, дополнительное охлаждение), Б2.4 – зональной доводки, Б2.5 – местной доводки (эжекционные доводчики и др.), Б2.7 – шумоглушения, Б2.8 – перемещения рециркуляционного воздуха;
    • специальной обработки: Б5.5 – тонкой очистки;
    • воздушной сети: Б4.2 – воздухораспределительных устройств, Б4.3 – вытяжных устройств, Б4.5 – воздуховодов;
    • автоматизации – арматуры – Б3.1.

    Помимо этих блоков в СКВ может входить система холодоснабжения (снабжение электроэнергией и теплом осуществляется, как правило, централизованно). Ее включение в состав СКВ, видимо, относится к автономным кондиционерам (см. далее).
    Для определения состава оборудования, входящего в СКВ, и границ раздела целесообразно воспользоваться делением на разделы, которое сложилось в практике проектирования.
    В частности, при выполнении проектов кондиционирования воздуха достаточно серьезных объектов обычно выделяют в самостоятельные разделы: теплоснабжение СКВ; холодоснабжение и холодильные центры; электроснабжение; автоматизация; водоснабжение, в том числе оборотное, канализация и дренаж.
    Причем по каждому из разделов составляют свою спецификацию, в которую включено оборудование, материалы и арматура, относящиеся к своему конкретному разделу.
    Таким образом, в состав СКВ следует включить:

    • УКВ, предназначенную для очистки и тепловлажностной обработки и получения необходимого качества воздуха и его транспортировки по сети воздуховодов до обслуживаемого помещения или технического объема;
    • сеть приточных воздуховодов с воздухораспределителями, клапанами и регулирующими устройствами;
    • вытяжной вентилятор и сеть вытяжных и рециркуляционных воздуховодов с сетевым оборудованием;
    • сеть фреоновых трубопроводов для сплит-систем и VRV-систем с кабелями связи наружных блоков с внутренними;
    • фэнкойлы, эжекционные доводчики, моноблоки, холодные и теплые потолки и балки и др. доводчики для охлаждения и (или) нагревания непосредственно внутреннего воздуха;
    • оборудование для утилизации теплоты и холода;
    • дополнительные воздушные фильтры, шумоглушители и другие элементы.

    И даже систему автоматики, входящую в СКВ как бы по определению, целесообразно выделить отдельно, так как ее проектируют инженеры другой специальности, хотя и по заданию так называемых технологов СКВ.
    Границей СКВ и систем теплохолодоснабжения можно считать узлы регулирования, а границей электроснабжения и автоматики – электрические щиты и щиты управления, которые в последнее время очень часто делают совмещенными.

    Классификация систем кондиционирования воздуха

    Проблемам классификации СКВ в большей или меньшей степени уделяли внимание практически все авторы учебников и монографий по кондиционированию воздуха. Вот что написал по этому вопросу известный специалист, доктор техн. наук А. А. Рымкевич [6]: «Анализ иерархической структуры самих СКВ прежде всего требует их классификации и только затем их декомпозиции на подсистемы. …Однако для СКВ, решения которых базируются на учете большого числа данных, разработать такую классификацию всегда сложно. Не случайно в литературе нет единого мнения по данному вопросу, и поэтому многие известные авторы… предложили различные методы классификации».
    Предложенная А. А. Рымкеви-чем концепция выбора признаков классификации СКВ сформулирована очень точно, и с ней нельзя не согласиться. Проблема состоит в том, как этой концепцией воспользоваться и какие признаки считать определяющими, а какие вторичными, и как точно сформулировать эти признаки.
    В начале восьмидесятых годов прошлого века наиболее полная классификация СКВ была предложена в работе Б. В. Баркалова и Е. Е. Карписа [7].
    Основные признаки этой классификации с некоторыми дополнениями использованы и в недавно изданной монографии А. Г. Сотникова [8] и в других работах, однако некоторые формулировки отдельных признаков требуют уточнения и корректировки.
    Например, для опытных специалистов не составит труда разделить СКВ на центральные и местные, посмотрим, как признак такого деления сформулирован разными авторами.
    Б. В. Баркалов, Е. Е. Карпис пишут [7]: «В зависимости от расположения кондиционеров по отношению к обслуживаемым помеще-ниям СКВ делятся на центральные и местные». А. Г. Сотников [8] считает необходимым дополнить: «Деление на местные и центральные СКВ учитывает как место установки кондиционера, так и группировку помещений по системам», а О. Я. Кокорин уточняет: «По характеру связи с обслуживаемым помещением можно подразделить СКВ на три вида: центральные, местные и центрально-местные. Центральные СКВ характеризуются расположением УКВ в удалении от обслуживаемых объектов и наличием приточных воздуховодов значительной протяженности. Местные СКВ характеризуются расположением УКВ в самом обслуживаемом помещении или в непосредственной близости от него, при отсутствии (или наличии весьма коротких) приточных воздуховодов. Центрально-местные СКВ характеризуются как наличием УКВ в удалении от обслуживаемых объектов, так и местных УКВ, располагаемых в самих помещениях или в непосредственной близости от них».
    Трудно понять, что имеется в виду под группировкой помещений по системам и что считается протяженными или весьма короткими воздуховодами. Например, кондиционеры, обслуживающие текстильные цеха на Волжском заводе синтетического волокна, имеют производительность по воздуху до 240 м3/ч и расположены рядом с обслуживаемыми помещениями, то есть непосредственно за стенами, но никто из указанных выше авторов не отнес бы их к местным системам.
    Несколько иной признак клас-сификации предложил Е. В. Стефанов [9]: «… по степени централизации – на системы центральные, обслуживающие из одного центра несколько помещений, и местные, устраиваемые для отдельных помещений и располагающиеся, как правило, в самих обслуживаемых помещениях».
    К сожалению, и эта формулировка является нечеткой, так как одно большое помещение могут обслуживать несколько центральных кондиционеров, а группу небольших помещений – один местный кондиционер.
    Фактически в отечественной практике негласно действовал совсем другой признак классификации: все кондиционеры, выпускавшиеся Харьковским заводом «Кондиционер», кроме шкафных, считались центральными, а все кондиционеры, выпускавшиеся Домодедовским заводом «Кондиционер», кроме горизонтальных производительностью 10 и 20 тыс. м3/ч, – относились к местным.
    Конечно, сегодня такое деление выглядит смешным, а между тем в нем был определенный здравый смысл.
    Известно, что в местных системах используются готовые агрегаты полной заводской сборки обычно шкафного типа со стандартным набором тепломассообменного оборудования с уже готовыми, заданными заранее техническими характеристиками, поэтому местные УКВ не проектируют, а подбирают для конкретного обслуживаемого помещения или группы небольших однотипных помещений.
    Максимальная производительность местных систем по воздуху обычно не превышает 20–30 тыс. м3/ч.
    Центральные кондиционеры могут быть также полной заводской сборки или собираются на месте монтажа, причем технические характеристики всех элементов, включая воздушные фильтры, вентиляторы и тепломассообменное оборудование, задаются производителями в очень широких пределах, поэтому такие кондиционеры не подбирают, а проектируют, а затем изготавливают в соответствии с бланком-заказом для конкретного объекта.
    Обычно центральные кондиционеры собирают в виде горизонтальных блоков, причем производительность таких кондиционеров по воздуху значительно больше, чем у местных и достигает 100–250 тыс. м3/ч у разных фирм-производителей.
    Очевидно, что отмеченные признаки относятся к УКВ, но их можно использовать и для классификации СКВ, например, СКВ с центральной УКВ – центральная СКВ, а с местной УКВ – местная СКВ. Такой подход не исключает полностью признаки, предложенные другими авторами, а дополняет их, исключая некоторые неопределенности, типа протяженности воздуховодов и др.
    Для дальнейшей классификации СКВ рассмотрим схему ее функционирования.
    На параметры внутреннего воздуха в обслуживаемом помещении или технологическом объеме оказывают воздействие внутренние возмущения, то есть изменяющиеся тепло- и влаговыделения, а также внешние факторы, например, изменение температуры и влагосодержания наружного воздуха, воздействие на остекленный фасад прямой солнечной радиации в разное время суток и др.
    Задача СКВ состоит в том, чтобы улавливать и своевременно устранять последствия этих возмущений и воздействий для сохранения параметров внутреннего воздуха в заданных пределах, используя систему автоматического регулирования и необходимый набор оборудования (воздухоохладители, воздухонагреватели, увлажнители и др.), а также источники теплоты и холода.
    Поддерживать требуемые параметры внутреннего воздуха можно изменяя параметры или расход приточного воздуха, подаваемого в помещение извне, или с помощью аппаратов, установленных непосредственно в помещении, так называемых доводчиков.
    Сегодня в качестве доводчиков используют внутренние блоки сплит-систем и VRV-систем, фэнкойлы, моноблоки, охлаждаемые потолки и балки и другие элементы.
    К сожалению, в классификации [7] вместо понятия «доводчики» используется понятие «водовоздушные СКВ», а в классификации [8] дополнительно вводится термин «водо- и фреоновоздушная СКВ». С подобными предложениями нельзя согласиться в принципе, так как их авторы вольно или невольно присваивают сплит-системам или фэнкойлам статус систем кондиционирования воздуха, которыми они не являются и, естественно, не могут входить в классификацию СКВ, поскольку являются всего лишь местными охладителями или нагревателями, то есть не более чем доводчиками.
    Справедливости ради отметим, что Б. В. Баркалов начинает описание центральных водовоздушных систем очень точной фразой: «В каждое помещение вводится наружный воздух, приготовленный в центральном кондиционере. Перед выпуском в помещение он смешивается с воздухом данного помещения, предварительно охлажденным или нагретым в теплообменниках кондиционеров?доводчиков, снабжаемых холодной и горячей водой». Приведенная цитата показывает, что автор хорошо понимает неопределенность предложенного им признака классификации и поэтому сразу поясняет, что он имеет в виду под центральными водовоздушными системами.
    Системы без доводчиков могут быть прямоточными, когда в помещение подается обработанный наружный воздух, и с рециркуляцией, когда к наружному воздуху подмешивают воздух, забираемый из помещения. Кроме того, технологические СКВ, обслуживающие помещения или аппараты без пребывания людей, могут работать без подачи наружного воздуха со 100 % рециркуляцией. В зависимости от алгоритма работы СКВ различают системы с постоянной рециркуляцией, в которых соотношение количества наружного и рециркуляционного воздуха во время работы не изменяется, и СКВ с переменной рециркуляцией, в которых количество наружного воздуха может изменяться от 100 % до некоторого нормируемого минимального уровня.
    Кроме того, системы с рециркуляцией могут быть одновентиляторными и двухвентиляторными. В первых системах подача приточного воздуха в помещение, а также забор наружного и рециркуляционного воздуха осуществляется приточным вентилятором УКВ. Во втором случае для удаления воздуха из помещения и подачи его на рециркуляцию или на выброс применяют дополнительный вытяжной вентилятор.
    Независимо от схемы компоновки и устройства отдельных элементов СКВ подразделяют также по их назначению. Многие авторы делят СКВ на комфортные, технологические и комфортно-технологические. Более удачной и полной представляется классификация СКВ по назначению на эргономической основе, разработанная ВНИИкондиционером [5].
    Определено, что СКВ могут выполнять одну из трех функций обслуживания: машин; машин + людей; людей.
    1-я группа (символ «машина») определена как технологические СКВ. СКВ этой группы обслуживают технологические аппараты, камеры, боксы, машины и т. п., то есть применяются в тех случаях, когда условия воздушной среды диктуются обеспечением работоспособности технологического оборудования. При этом параметры воздушной среды могут отличаться от тех, которые определяются санитарно-гигиеническими нормами.
    1-я группа имеет две модификации:

    • Подгруппа 1–1 включает в себя кондиционируемые объекты, полностью исключающие возможность пребывания в них человека, то есть это системы технологического охлаждения, обдува электронных блоков вычислительных машин, шахты обдува волокна прядильных машин и т. п.
    • Подгруппа 1–2 включает в себя кондиционируемые объекты: технологические аппараты (машины, камеры, боксы) и помещения с особыми параметрами воздушной среды (калориметрического, экологического и другого назначения), в которых человек отсутствует или находится эпизодически (для снятия показаний приборов, изменения режима работы и т. д.).

    Если для группы 1–1 отсутствуют какие-либо ограничения по параметрам и составу воздушной среды, то для объектов подгруппы 1–2 газовый состав воздушной среды должен находиться в пределах, установленных ГОСТ.
    2-я группа (символ «машина + человек») определена как технологически комфортные СКВ. СКВ этой группы обслуживают производственные помещения, в которых длительно пребывают люди.
    2-я группа имеет три модификации:

    • Подгруппа 2–1. Технологически комфортные СКВ обеспечивают условия нормального осуществления технологических процессов как для производств, в которых затруднено или практически невозможно получение продукции без поддержания определенных параметров воздушной среды, так и для производств, в которых колебания параметров воздуха существенно влияют на качество продукции и величину брака.
    • Для этих помещений СКВ устраивается в первую (и основную) очередь по требованиям технологии, однако в связи с наличием в этих помещениях людей, параметры КВ устанавливают с учетом требований санитарно-гигиенических норм.
    • Подгруппа 2–2. СКВ создаются для исключения дискомфортных условий труда при тяжелых режимах работы людей (кабины крановщиков мостовых кранов металлургических заводов и ТЭЦ, кабины строительно-дорожных машин и т. д.). Производственные или экономические аспекты для этих установок имеют второстепенное значение.
    • Подгруппа 2–3. СКВ обеспечивают в производственных помещениях комфортные условия труда, способствующие повышению производительности труда, улучшению проведения основных технологических режимов, снижению заболеваемости, уменьшению эксплуатационных затрат и т. п.

    3-я группа (символ «люди») определена как комфортные СКВ, обеспечивающие санитарно-гигиенические условия труда, отдыха или иного пребывания людей в помещениях гражданских зданий, то есть вне промышленного производства.
    Эта группа имеет две модификации:

    • Подгруппа 3–1. СКВ обслуживают помещения общественных зданий, в которых для одной части людей пребывание в них кратковременно (например, покупатели в универмаге), а для другой – длительно (например, продавцы в этом же универмаге).
    • Подгруппа 3–2. СКВ обеспечивают оптимальные условия пребывания людей в жилых помещениях.

    В классификацию ВНИИконди-ционера необходимо ввести еще одну группу – медицинские СКВ. Очевидно, что СКВ, обслуживающие операционные, реанимационные или палаты интенсивной терапии, никак нельзя считать комфортными, а чтобы отнести их к технологическим, надо в качестве «машины» рассматривать самого человека, что просто глупо.
    Медицинские СКВ должны иметь две подгруппы:

    • Подгруппа 4–1. СКВ обслуживают операционные, реанимационные и т. п. помещения.
    • Подгруппа 4–2. СКВ обеспечивают требуемые параметры воздуха в палатах, кабинетах врачей, процедурных и т. п.

     

    4805

    Для завершения классификации СКВ рассмотрим еще несколько признаков.
    По типу системы холодоснабжения различают автономные и неавтономные СКВ. В автономных источник холода встроен в кондиционер, в неавтономных – источником холода является отдельный холодильный центр. Кроме того, в автономных кондиционерах в воздухоохладитель может подаваться кипящий хладон или жидкий промежуточный хладоноситель (холодная вода, растворы). Заметим, что на многих объектах мы использовали схему с подачей хладона в воздухоохладитель центрального кондиционера от расположенной рядом холодильной машины или внешнего блока VRV.
    По способу компенсации изменяющихся тепловых и (или) влажностных возмущений в обслуживаемом помещении различают СКВ с постоянным расходом воздуха (CAV) – системы, в которых внутренние параметры поддерживают изменяя температуру и влажность приточного воздуха (качественное регулирование), и системы с переменным расходом воздуха (VAV) – системы с количественным регулированием.
    По числу воздуховодов для подачи кондиционированного воздуха в помещенияСКВ делятся на одноканальные и двухканальные, при этом приточный воздух в каждом канале имеет разную температуру и влажность, что позволяет, изменяя соотношение приточного воздуха, подаваемого через каждый канал, поддерживать требуемые параметры в обслуживаемом помещении.
    По числу точек стабилизации одноименного параметра (t; φ)в большом помещении или группе небольших помещений различают одно- и многозональные СКВ.
    –это СКВ с местными доводчиками. В этих СКВ центральная или местная УКВ подает в помещение санитарную норму наружного воздуха, даже не обязательно обработанного, а местные доводчики обеспечивают поддержание в помещении требуемых параметров воздуха (температуры, относительной влажности и подвижности).
    Сегодня в качестве местных доводчиков применяют: внутренние блоки сплит-систем или VRV-систем; фэнкойлы (двух- или четырехтрубные); моноблоки (напольные, потолочные или настенные); эжекционные доводчики; местные увлажнители воздуха; охлаждаемые и нагреваемые потолки; охлаждающие балки (пассивные и активированные).
    Все указанные доводчики сами по себе не являются кондиционерами, хотя их и называют так продавцы оборудования.
    Известно, что некоторые фирмы работают над созданием, например, фэнкойлов или сплит-систем, подающих в помещение наружный воздух. Но, если это и произойдет в массовом масштабе, то ничего страшного с классификацией не случится, просто это оборудование получит статус местных кондиционеров.
    Блок-схема рассмотренной классификации СКВ приведена на рис. 2.
    Помимо рассмотренных признаков в схему на рис. 2 включен еще один: наличие утилизаторов теплоты и холода, которые могут быть как в центральных, так и в местных СКВ. Причем необходимо различать системы утилизации типа воздух-воздух, к которым относятся схемы с промежуточным теплоносителем, с пластинчатыми теплообменниками* и с регенеративными вращающимися и переключаемыми теплообменниками, а также системы утилизации теплоты оборотной воды и теплоты обратного теплоносителя систем централизованного теплоснабжения и систем технологического жидкостного охлаждения.

    Литература

    1. Липа А. И. Кондиционирование воздуха. Основы теории. Совре-менные технологии обработки воздуха. – Одесса: Издательство ВМВ, 2010.
    2. СНиП 41–01–2003. Отопление, вентиляция, кондиционирование. М.: Госстрой России. – 2004.
    3. Англо-русский терминологический словарь по отоплению, вентиляции, кондиционированию воздуха и охлаждению. М.: Изд-во «АВОК-ПРЕСС», 2002.
    4. Кокорин О. Я. Энергосберегаю-щие системы кондиционирования воздуха. ООО «ЛЭС». – М., 2007.
    5. Кондиционеры. Каталог-спра-воч-ник ЦНИИТЭстроймаш. – М., 1981.
    6. Рымкевич А. А. Системный анализ оптимизации общеобменной вентиляции и кондиционирования воздуха. Изд. 1. – М.: Стройиздат, 1990.
    7. Баркалов Б. В., Карпис Е. Е. Кондиционирование воздуха в промышленных, общественных и жилых зданиях. Изд. 2. – М.: Стройиздат, 1982.
    8. Сотников А. Г. Процессы, аппараты и системы кондиционирования воздуха и вентиляции. Т. 1. ООО «АТ». – С.-Петербург, 2005.
    9. Стефанов Е. В. Вентиляция и кондиционирование воздуха. – С.-Петербург: Изд-во «АВОК-Северо-Запад», 2005.

    [ http://www.abok.ru/for_spec/articles.php?nid=5029]

    Тематики

    EN

    DE

    FR

    Немецко-русский словарь нормативно-технической терминологии > Klimaanlage

  • 10 air conditioning system

    1. система кондиционирования воздуха (спорт)
    2. система кондиционирования воздуха

     

    система кондиционирования воздуха
    Совокупность воздухотехнического оборудования, предназначенная для кондиционирования воздуха в помещениях
    [ ГОСТ 22270-76]

    система кондиционирования воздуха

    Совокупность технических средств для обработки и распределения воздуха, а также автоматического регулирования его параметров с дистанционным управлением всеми процессами
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    система кондиционирования воздуха

    Комбинация всех компонент, необходимых для обработки воздуха, в процессе которой осуществляется контроль или понижение температуры, возможно, в комбинации с контролем вентиляции, влажности и чистоты воздуха.
    [ДИРЕКТИВА 2002/91/ЕС ЕВРОПЕЙСКОГО ПАРЛАМЕТА И СОВЕТА от 16 декабря 2002 г. по энергетическим характеристикам зданий]


    КЛАССИФИКАЦИЯ



    Классификация систем кондиционирования воздуха

    М. Г. Тарабанов, директор НИЦ «ИНВЕНТ», канд. техн. наук, вице-президент НП «АВОК», лауреат премии НП «АВОК» «Медаль имени И. Ф. Ливчака», «Медаль имени В. Н. Богословского», otvet@abok.ru

    Общие положения

    Краткий, но достаточно полный обзор истории развития кондиционирования воздуха представлен в работе А. И. Липы [1], поэтому отметим только несколько моментов. Родоначальником техники кондиционирования воздуха в ее современном понимании считается американский инженер Виллис Хэвилэнд Кэрриер (Willis Haviland Carrier), который в 1902 году в Нью-Йорке в Бруклинской типографии применил поверхностный водяной воздухоохладитель с вентилятором для получения летом в помещении температуры +26,5 °C и относительной влажности 55 %. Вода охлаждалась в аммиачной холодильной машине. Зимой для увлажнения внутреннего воздуха до 55 % использовался водяной пар от бойлера.
    Термин «кондиционирование воздуха» был предложен в 1906 году Стюартом Уорреном Крамером (Stuart Warren Cramer).
    В отечественной практике некоторые авторы применяют термин «кондиционирование микроклимата». Заметим, что этот термин отличается от «кондиционирования воздуха», так как включает в себя дополнительные факторы, не связанные с состоянием воздушной среды в помещении (шум, инсоляция и др.).
    К сожалению, несмотря на солидный возраст термин «кондиционирование воздуха» не получил четкого определения в современных отечественных нормативных документах. Для устранения этого пробела сформулируем: «Кондиционирование воздуха – это создание и автоматическое поддержание в обслуживаемом помещении или технологическом объеме требуемых параметров и качества воздуха независимо от внутренних возмущений и внешних воздействий». К параметрам воздуха относятся: температура, относительная влажность или влагосодержание и подвижность. Качество воздуха включает в себя газовый состав, запыленность, запахи, аэроионный состав, т. е. более широкий круг показателей, чем термин «чистота», используемый в [2].
    Комплекс оборудования, элементов и устройств, с помощью которых обеспечивается кондиционирование воздуха в обслуживаемых помещениях, называется системой кондиционирования воздуха (СКВ).
    Приведенное выше определение системы кондиционирования воздуха по смыслу полностью совпадает с определением ASHRAE: «”air-conditioning system” – комплекс оборудования для одновременной обработки и регулирования температуры, влажности, чистоты воздуха и распределения последнего в соответствии с заданными требованиями» [3].
    Общепринятого, устоявшегося мнения, что следует включать в состав СКВ, к сожалению, нет.
    Так, например, по мнению О. Я. Кокорина [4] СКВ может включать в себя:

    • установку кондиционирования воздуха (УКВ), обеспечивающую необходимые кондиции воздушной среды по тепловлажностным качествам, чистоте, газовому составу и наличию запахов;
    • средства автоматического регулирования и контроля за приготовлением воздуха нужных кондиций в УКВ, а также для поддержания в обслуживаемом помещении или сооружении постоянства заданных кондиций воздуха;
    • устройства для транспортирования и распределения кондиционированного воздуха;
    • устройства для транспортирования и удаления загрязненного внутреннего воздуха;
    • устройства для глушения шума, вызываемого работой элементов СКВ;
    • устройства для приготовления и транспортирования источников энергии, необходимых для работы аппаратов в СКВ.

    В зависимости от конкретных условий некоторые составные части СКВ могут отсутствовать.
    Однако согласиться с отдельными пунктами предложенного состава СКВ нельзя, так как если следовать логике автора [4], то в состав СКВ должны войти и системы оборотного водоснабжения, водопровода и канализации, ИТП и трансформаторные, которые также необходимы для работы аппаратов в СКВ.
    Достаточно полное представление о структуре СКВ дает разработанная во ВНИИкондиционере «Блок-схема системы кондиционирования воздуха» (рис. 1) [5].

    4804

    Включенные в эту блок-схему подсистемы обработки воздуха по своему функциональному назначению делятся на блоки:

    • основной обработки и перемещения: Б1.1 – приемный, Б1.8 – очистки, Б1.2 – сухого (первого) подогрева, Б1.3 – охлаждения, Б1.6 – тепловлажностной обработки, Б1.9 – перемещения приточного воздуха;
    • дополнительной обработки и перемещения: Б2.1 – утилизации, Б2.2 – предварительного подогрева, Б2.3 – доводки общей (второй подогрев, дополнительное охлаждение), Б2.4 – зональной доводки, Б2.5 – местной доводки (эжекционные доводчики и др.), Б2.7 – шумоглушения, Б2.8 – перемещения рециркуляционного воздуха;
    • специальной обработки: Б5.5 – тонкой очистки;
    • воздушной сети: Б4.2 – воздухораспределительных устройств, Б4.3 – вытяжных устройств, Б4.5 – воздуховодов;
    • автоматизации – арматуры – Б3.1.

    Помимо этих блоков в СКВ может входить система холодоснабжения (снабжение электроэнергией и теплом осуществляется, как правило, централизованно). Ее включение в состав СКВ, видимо, относится к автономным кондиционерам (см. далее).
    Для определения состава оборудования, входящего в СКВ, и границ раздела целесообразно воспользоваться делением на разделы, которое сложилось в практике проектирования.
    В частности, при выполнении проектов кондиционирования воздуха достаточно серьезных объектов обычно выделяют в самостоятельные разделы: теплоснабжение СКВ; холодоснабжение и холодильные центры; электроснабжение; автоматизация; водоснабжение, в том числе оборотное, канализация и дренаж.
    Причем по каждому из разделов составляют свою спецификацию, в которую включено оборудование, материалы и арматура, относящиеся к своему конкретному разделу.
    Таким образом, в состав СКВ следует включить:

    • УКВ, предназначенную для очистки и тепловлажностной обработки и получения необходимого качества воздуха и его транспортировки по сети воздуховодов до обслуживаемого помещения или технического объема;
    • сеть приточных воздуховодов с воздухораспределителями, клапанами и регулирующими устройствами;
    • вытяжной вентилятор и сеть вытяжных и рециркуляционных воздуховодов с сетевым оборудованием;
    • сеть фреоновых трубопроводов для сплит-систем и VRV-систем с кабелями связи наружных блоков с внутренними;
    • фэнкойлы, эжекционные доводчики, моноблоки, холодные и теплые потолки и балки и др. доводчики для охлаждения и (или) нагревания непосредственно внутреннего воздуха;
    • оборудование для утилизации теплоты и холода;
    • дополнительные воздушные фильтры, шумоглушители и другие элементы.

    И даже систему автоматики, входящую в СКВ как бы по определению, целесообразно выделить отдельно, так как ее проектируют инженеры другой специальности, хотя и по заданию так называемых технологов СКВ.
    Границей СКВ и систем теплохолодоснабжения можно считать узлы регулирования, а границей электроснабжения и автоматики – электрические щиты и щиты управления, которые в последнее время очень часто делают совмещенными.

    Классификация систем кондиционирования воздуха

    Проблемам классификации СКВ в большей или меньшей степени уделяли внимание практически все авторы учебников и монографий по кондиционированию воздуха. Вот что написал по этому вопросу известный специалист, доктор техн. наук А. А. Рымкевич [6]: «Анализ иерархической структуры самих СКВ прежде всего требует их классификации и только затем их декомпозиции на подсистемы. …Однако для СКВ, решения которых базируются на учете большого числа данных, разработать такую классификацию всегда сложно. Не случайно в литературе нет единого мнения по данному вопросу, и поэтому многие известные авторы… предложили различные методы классификации».
    Предложенная А. А. Рымкеви-чем концепция выбора признаков классификации СКВ сформулирована очень точно, и с ней нельзя не согласиться. Проблема состоит в том, как этой концепцией воспользоваться и какие признаки считать определяющими, а какие вторичными, и как точно сформулировать эти признаки.
    В начале восьмидесятых годов прошлого века наиболее полная классификация СКВ была предложена в работе Б. В. Баркалова и Е. Е. Карписа [7].
    Основные признаки этой классификации с некоторыми дополнениями использованы и в недавно изданной монографии А. Г. Сотникова [8] и в других работах, однако некоторые формулировки отдельных признаков требуют уточнения и корректировки.
    Например, для опытных специалистов не составит труда разделить СКВ на центральные и местные, посмотрим, как признак такого деления сформулирован разными авторами.
    Б. В. Баркалов, Е. Е. Карпис пишут [7]: «В зависимости от расположения кондиционеров по отношению к обслуживаемым помеще-ниям СКВ делятся на центральные и местные». А. Г. Сотников [8] считает необходимым дополнить: «Деление на местные и центральные СКВ учитывает как место установки кондиционера, так и группировку помещений по системам», а О. Я. Кокорин уточняет: «По характеру связи с обслуживаемым помещением можно подразделить СКВ на три вида: центральные, местные и центрально-местные. Центральные СКВ характеризуются расположением УКВ в удалении от обслуживаемых объектов и наличием приточных воздуховодов значительной протяженности. Местные СКВ характеризуются расположением УКВ в самом обслуживаемом помещении или в непосредственной близости от него, при отсутствии (или наличии весьма коротких) приточных воздуховодов. Центрально-местные СКВ характеризуются как наличием УКВ в удалении от обслуживаемых объектов, так и местных УКВ, располагаемых в самих помещениях или в непосредственной близости от них».
    Трудно понять, что имеется в виду под группировкой помещений по системам и что считается протяженными или весьма короткими воздуховодами. Например, кондиционеры, обслуживающие текстильные цеха на Волжском заводе синтетического волокна, имеют производительность по воздуху до 240 м3/ч и расположены рядом с обслуживаемыми помещениями, то есть непосредственно за стенами, но никто из указанных выше авторов не отнес бы их к местным системам.
    Несколько иной признак клас-сификации предложил Е. В. Стефанов [9]: «… по степени централизации – на системы центральные, обслуживающие из одного центра несколько помещений, и местные, устраиваемые для отдельных помещений и располагающиеся, как правило, в самих обслуживаемых помещениях».
    К сожалению, и эта формулировка является нечеткой, так как одно большое помещение могут обслуживать несколько центральных кондиционеров, а группу небольших помещений – один местный кондиционер.
    Фактически в отечественной практике негласно действовал совсем другой признак классификации: все кондиционеры, выпускавшиеся Харьковским заводом «Кондиционер», кроме шкафных, считались центральными, а все кондиционеры, выпускавшиеся Домодедовским заводом «Кондиционер», кроме горизонтальных производительностью 10 и 20 тыс. м3/ч, – относились к местным.
    Конечно, сегодня такое деление выглядит смешным, а между тем в нем был определенный здравый смысл.
    Известно, что в местных системах используются готовые агрегаты полной заводской сборки обычно шкафного типа со стандартным набором тепломассообменного оборудования с уже готовыми, заданными заранее техническими характеристиками, поэтому местные УКВ не проектируют, а подбирают для конкретного обслуживаемого помещения или группы небольших однотипных помещений.
    Максимальная производительность местных систем по воздуху обычно не превышает 20–30 тыс. м3/ч.
    Центральные кондиционеры могут быть также полной заводской сборки или собираются на месте монтажа, причем технические характеристики всех элементов, включая воздушные фильтры, вентиляторы и тепломассообменное оборудование, задаются производителями в очень широких пределах, поэтому такие кондиционеры не подбирают, а проектируют, а затем изготавливают в соответствии с бланком-заказом для конкретного объекта.
    Обычно центральные кондиционеры собирают в виде горизонтальных блоков, причем производительность таких кондиционеров по воздуху значительно больше, чем у местных и достигает 100–250 тыс. м3/ч у разных фирм-производителей.
    Очевидно, что отмеченные признаки относятся к УКВ, но их можно использовать и для классификации СКВ, например, СКВ с центральной УКВ – центральная СКВ, а с местной УКВ – местная СКВ. Такой подход не исключает полностью признаки, предложенные другими авторами, а дополняет их, исключая некоторые неопределенности, типа протяженности воздуховодов и др.
    Для дальнейшей классификации СКВ рассмотрим схему ее функционирования.
    На параметры внутреннего воздуха в обслуживаемом помещении или технологическом объеме оказывают воздействие внутренние возмущения, то есть изменяющиеся тепло- и влаговыделения, а также внешние факторы, например, изменение температуры и влагосодержания наружного воздуха, воздействие на остекленный фасад прямой солнечной радиации в разное время суток и др.
    Задача СКВ состоит в том, чтобы улавливать и своевременно устранять последствия этих возмущений и воздействий для сохранения параметров внутреннего воздуха в заданных пределах, используя систему автоматического регулирования и необходимый набор оборудования (воздухоохладители, воздухонагреватели, увлажнители и др.), а также источники теплоты и холода.
    Поддерживать требуемые параметры внутреннего воздуха можно изменяя параметры или расход приточного воздуха, подаваемого в помещение извне, или с помощью аппаратов, установленных непосредственно в помещении, так называемых доводчиков.
    Сегодня в качестве доводчиков используют внутренние блоки сплит-систем и VRV-систем, фэнкойлы, моноблоки, охлаждаемые потолки и балки и другие элементы.
    К сожалению, в классификации [7] вместо понятия «доводчики» используется понятие «водовоздушные СКВ», а в классификации [8] дополнительно вводится термин «водо- и фреоновоздушная СКВ». С подобными предложениями нельзя согласиться в принципе, так как их авторы вольно или невольно присваивают сплит-системам или фэнкойлам статус систем кондиционирования воздуха, которыми они не являются и, естественно, не могут входить в классификацию СКВ, поскольку являются всего лишь местными охладителями или нагревателями, то есть не более чем доводчиками.
    Справедливости ради отметим, что Б. В. Баркалов начинает описание центральных водовоздушных систем очень точной фразой: «В каждое помещение вводится наружный воздух, приготовленный в центральном кондиционере. Перед выпуском в помещение он смешивается с воздухом данного помещения, предварительно охлажденным или нагретым в теплообменниках кондиционеров?доводчиков, снабжаемых холодной и горячей водой». Приведенная цитата показывает, что автор хорошо понимает неопределенность предложенного им признака классификации и поэтому сразу поясняет, что он имеет в виду под центральными водовоздушными системами.
    Системы без доводчиков могут быть прямоточными, когда в помещение подается обработанный наружный воздух, и с рециркуляцией, когда к наружному воздуху подмешивают воздух, забираемый из помещения. Кроме того, технологические СКВ, обслуживающие помещения или аппараты без пребывания людей, могут работать без подачи наружного воздуха со 100 % рециркуляцией. В зависимости от алгоритма работы СКВ различают системы с постоянной рециркуляцией, в которых соотношение количества наружного и рециркуляционного воздуха во время работы не изменяется, и СКВ с переменной рециркуляцией, в которых количество наружного воздуха может изменяться от 100 % до некоторого нормируемого минимального уровня.
    Кроме того, системы с рециркуляцией могут быть одновентиляторными и двухвентиляторными. В первых системах подача приточного воздуха в помещение, а также забор наружного и рециркуляционного воздуха осуществляется приточным вентилятором УКВ. Во втором случае для удаления воздуха из помещения и подачи его на рециркуляцию или на выброс применяют дополнительный вытяжной вентилятор.
    Независимо от схемы компоновки и устройства отдельных элементов СКВ подразделяют также по их назначению. Многие авторы делят СКВ на комфортные, технологические и комфортно-технологические. Более удачной и полной представляется классификация СКВ по назначению на эргономической основе, разработанная ВНИИкондиционером [5].
    Определено, что СКВ могут выполнять одну из трех функций обслуживания: машин; машин + людей; людей.
    1-я группа (символ «машина») определена как технологические СКВ. СКВ этой группы обслуживают технологические аппараты, камеры, боксы, машины и т. п., то есть применяются в тех случаях, когда условия воздушной среды диктуются обеспечением работоспособности технологического оборудования. При этом параметры воздушной среды могут отличаться от тех, которые определяются санитарно-гигиеническими нормами.
    1-я группа имеет две модификации:

    • Подгруппа 1–1 включает в себя кондиционируемые объекты, полностью исключающие возможность пребывания в них человека, то есть это системы технологического охлаждения, обдува электронных блоков вычислительных машин, шахты обдува волокна прядильных машин и т. п.
    • Подгруппа 1–2 включает в себя кондиционируемые объекты: технологические аппараты (машины, камеры, боксы) и помещения с особыми параметрами воздушной среды (калориметрического, экологического и другого назначения), в которых человек отсутствует или находится эпизодически (для снятия показаний приборов, изменения режима работы и т. д.).

    Если для группы 1–1 отсутствуют какие-либо ограничения по параметрам и составу воздушной среды, то для объектов подгруппы 1–2 газовый состав воздушной среды должен находиться в пределах, установленных ГОСТ.
    2-я группа (символ «машина + человек») определена как технологически комфортные СКВ. СКВ этой группы обслуживают производственные помещения, в которых длительно пребывают люди.
    2-я группа имеет три модификации:

    • Подгруппа 2–1. Технологически комфортные СКВ обеспечивают условия нормального осуществления технологических процессов как для производств, в которых затруднено или практически невозможно получение продукции без поддержания определенных параметров воздушной среды, так и для производств, в которых колебания параметров воздуха существенно влияют на качество продукции и величину брака.
    • Для этих помещений СКВ устраивается в первую (и основную) очередь по требованиям технологии, однако в связи с наличием в этих помещениях людей, параметры КВ устанавливают с учетом требований санитарно-гигиенических норм.
    • Подгруппа 2–2. СКВ создаются для исключения дискомфортных условий труда при тяжелых режимах работы людей (кабины крановщиков мостовых кранов металлургических заводов и ТЭЦ, кабины строительно-дорожных машин и т. д.). Производственные или экономические аспекты для этих установок имеют второстепенное значение.
    • Подгруппа 2–3. СКВ обеспечивают в производственных помещениях комфортные условия труда, способствующие повышению производительности труда, улучшению проведения основных технологических режимов, снижению заболеваемости, уменьшению эксплуатационных затрат и т. п.

    3-я группа (символ «люди») определена как комфортные СКВ, обеспечивающие санитарно-гигиенические условия труда, отдыха или иного пребывания людей в помещениях гражданских зданий, то есть вне промышленного производства.
    Эта группа имеет две модификации:

    • Подгруппа 3–1. СКВ обслуживают помещения общественных зданий, в которых для одной части людей пребывание в них кратковременно (например, покупатели в универмаге), а для другой – длительно (например, продавцы в этом же универмаге).
    • Подгруппа 3–2. СКВ обеспечивают оптимальные условия пребывания людей в жилых помещениях.

    В классификацию ВНИИконди-ционера необходимо ввести еще одну группу – медицинские СКВ. Очевидно, что СКВ, обслуживающие операционные, реанимационные или палаты интенсивной терапии, никак нельзя считать комфортными, а чтобы отнести их к технологическим, надо в качестве «машины» рассматривать самого человека, что просто глупо.
    Медицинские СКВ должны иметь две подгруппы:

    • Подгруппа 4–1. СКВ обслуживают операционные, реанимационные и т. п. помещения.
    • Подгруппа 4–2. СКВ обеспечивают требуемые параметры воздуха в палатах, кабинетах врачей, процедурных и т. п.

     

    4805

    Для завершения классификации СКВ рассмотрим еще несколько признаков.
    По типу системы холодоснабжения различают автономные и неавтономные СКВ. В автономных источник холода встроен в кондиционер, в неавтономных – источником холода является отдельный холодильный центр. Кроме того, в автономных кондиционерах в воздухоохладитель может подаваться кипящий хладон или жидкий промежуточный хладоноситель (холодная вода, растворы). Заметим, что на многих объектах мы использовали схему с подачей хладона в воздухоохладитель центрального кондиционера от расположенной рядом холодильной машины или внешнего блока VRV.
    По способу компенсации изменяющихся тепловых и (или) влажностных возмущений в обслуживаемом помещении различают СКВ с постоянным расходом воздуха (CAV) – системы, в которых внутренние параметры поддерживают изменяя температуру и влажность приточного воздуха (качественное регулирование), и системы с переменным расходом воздуха (VAV) – системы с количественным регулированием.
    По числу воздуховодов для подачи кондиционированного воздуха в помещенияСКВ делятся на одноканальные и двухканальные, при этом приточный воздух в каждом канале имеет разную температуру и влажность, что позволяет, изменяя соотношение приточного воздуха, подаваемого через каждый канал, поддерживать требуемые параметры в обслуживаемом помещении.
    По числу точек стабилизации одноименного параметра (t; φ)в большом помещении или группе небольших помещений различают одно- и многозональные СКВ.
    –это СКВ с местными доводчиками. В этих СКВ центральная или местная УКВ подает в помещение санитарную норму наружного воздуха, даже не обязательно обработанного, а местные доводчики обеспечивают поддержание в помещении требуемых параметров воздуха (температуры, относительной влажности и подвижности).
    Сегодня в качестве местных доводчиков применяют: внутренние блоки сплит-систем или VRV-систем; фэнкойлы (двух- или четырехтрубные); моноблоки (напольные, потолочные или настенные); эжекционные доводчики; местные увлажнители воздуха; охлаждаемые и нагреваемые потолки; охлаждающие балки (пассивные и активированные).
    Все указанные доводчики сами по себе не являются кондиционерами, хотя их и называют так продавцы оборудования.
    Известно, что некоторые фирмы работают над созданием, например, фэнкойлов или сплит-систем, подающих в помещение наружный воздух. Но, если это и произойдет в массовом масштабе, то ничего страшного с классификацией не случится, просто это оборудование получит статус местных кондиционеров.
    Блок-схема рассмотренной классификации СКВ приведена на рис. 2.
    Помимо рассмотренных признаков в схему на рис. 2 включен еще один: наличие утилизаторов теплоты и холода, которые могут быть как в центральных, так и в местных СКВ. Причем необходимо различать системы утилизации типа воздух-воздух, к которым относятся схемы с промежуточным теплоносителем, с пластинчатыми теплообменниками* и с регенеративными вращающимися и переключаемыми теплообменниками, а также системы утилизации теплоты оборотной воды и теплоты обратного теплоносителя систем централизованного теплоснабжения и систем технологического жидкостного охлаждения.

    Литература

    1. Липа А. И. Кондиционирование воздуха. Основы теории. Совре-менные технологии обработки воздуха. – Одесса: Издательство ВМВ, 2010.
    2. СНиП 41–01–2003. Отопление, вентиляция, кондиционирование. М.: Госстрой России. – 2004.
    3. Англо-русский терминологический словарь по отоплению, вентиляции, кондиционированию воздуха и охлаждению. М.: Изд-во «АВОК-ПРЕСС», 2002.
    4. Кокорин О. Я. Энергосберегаю-щие системы кондиционирования воздуха. ООО «ЛЭС». – М., 2007.
    5. Кондиционеры. Каталог-спра-воч-ник ЦНИИТЭстроймаш. – М., 1981.
    6. Рымкевич А. А. Системный анализ оптимизации общеобменной вентиляции и кондиционирования воздуха. Изд. 1. – М.: Стройиздат, 1990.
    7. Баркалов Б. В., Карпис Е. Е. Кондиционирование воздуха в промышленных, общественных и жилых зданиях. Изд. 2. – М.: Стройиздат, 1982.
    8. Сотников А. Г. Процессы, аппараты и системы кондиционирования воздуха и вентиляции. Т. 1. ООО «АТ». – С.-Петербург, 2005.
    9. Стефанов Е. В. Вентиляция и кондиционирование воздуха. – С.-Петербург: Изд-во «АВОК-Северо-Запад», 2005.

    [ http://www.abok.ru/for_spec/articles.php?nid=5029]

    Тематики

    EN

    DE

    FR

     

    система кондиционирования воздуха
    СКВ

    Система, позволяющая контролировать температуру, а иногда влажность и чистоту воздуха в помещении или транспортном средстве.
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    EN

    air conditioning system
    ACS
    System for controlling temperature and sometimes humidity and purity of the air indoor or in a vehicle.
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > air conditioning system

  • 11 hierarchical routing

    1. иерархическая маршрутизация (в электросвязи)
    2. иерархическая маршрутизация

     

    иерархическая маршрутизация
    Одна из трех основных форм алгоритма для динамического управления путем. В ней используется декомпозиция сети уровня в иерархию подсетей. Контроллеры соединений связаны один с другим в иерархическом порядке. В каждой сети имеется свое динамическое управление соединениями, которому известна топология своей вложенной сети, но не известна топология сетей, которые выше или ниже их по иерархии (или других подсетей того же уровня в иерархии). (МСЭ-T G.709/ Y.1353).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    иерархическая маршрутизация
    Маршрутизация в многоуровневой сети, выполняемая автономно на каждом ее уровне.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    EN

    Англо-русский словарь нормативно-технической терминологии > hierarchical routing

  • 12 BR

    = br
    1) [branch]
    а) ветвь (1. ответвление; отвод; отходящая в сторону часть главного 2. ветвь дерева, ветвь древовидной иерархической структуры 3. отдельная линия родства (в генетических алго-ритмах) 4. фрагмент программы или алгоритма, выполняемый по команде условного или безусловного перехода 5. фтт континуум однотипных элементарных возбуждений; континуум элементарных возбуждений в изолированной полосе спектра)
    г) вчт операция ( условного или безусловного) перехода, операция передачи управления ( при условном или безусловном переходе)
    2) [bridge]
    а) (измерительный) мост; мостовая схема
    б) шунт; перемычка
    в) свпр мостик
    г) вчт мост (1. программное или аппаратное средство обеспечения совместимости между системами 2. часть набора формирующих функциональный блок компьютера ИС (на материнской плате), проф. часть чипсета 3. устройство для соединения сегментов сети на-канальном уровне в-модели ISO/OSI 4. ребро графа, не принадлежащее ни одному циклу)
    ж) фтт мостик; мостиковый фрагмент; валентная связь ( в химических соединениях)
    3) [brush]
    б) скользящий контакт, подвижный контакт
    4) [buffer register] буферный регистр
    5) [bulk resistance] объёмное сопротивление

    English-Russian electronics dictionary > BR

  • 13 BR

    1) сокр. от branch
    а) ветвь (1. ответвление; отвод; отходящая в сторону часть главного 2. ветвь дерева, ветвь древовидной иерархической структуры 3. отдельная линия родства (в генетических алгоритмах) 4. фрагмент программы или алгоритма, выполняемый по команде условного или безусловного перехода 5. фтт. континуум однотипных элементарных возбуждений; континуум элементарных возбуждений в изолированной полосе спектра)
    г) вчт. операция (условного или безусловного) перехода, операция передачи управления ( при условном или безусловном переходе)
    2) сокр. от bridge
    а) (измерительный) мост; мостовая схема
    б) шунт; перемычка
    в) свпр. мостик
    г) вчт. мост (1. программное или аппаратное средство обеспечения совместимости между системами 2. часть набора формирующих функциональный блок компьютера ИС (на материнской плате), проф. часть чипсета 3. устройство для соединения сегментов сети на канальном уровне в модели ISO/OSI 4. ребро графа, не принадлежащее ни одному циклу 5. вчт. радиомост (для соединения сегментов сети через радиоэфир) 6. связка между частями (вещательной программы) 7. фтт. мостик; мостиковый фрагмент; валентная связь (в химических соединениях))
    3) сокр. от brush
    б) скользящий контакт, подвижный контакт
    4) сокр. от buffer register буферный регистр
    5) сокр. от bulk resistance объёмное сопротивление

    The New English-Russian Dictionary of Radio-electronics > BR

  • 14 fieldbus node

    1. узел полевой шины

     

    узел полевой шины
    узел промышленной сети

    -
    [Интент]

    5585
    Рис. WAGO

    Подчеркнем две особенности современных цифровых промышленных сетей (ЦПС) — распределенный характер «интеллекта» и цифровой способ обмена данными между узлами сети. Узлы ЦПС располагаются максимально приближенно к оконечным устройствам, благодаря чему длина аналоговых линий сокращается до минимума. Каждый узел ЦПС является «интеллектуальным» устройством и выполняет несколько функций:
    ● приём команд и данных от других узлов ЦПС,
    ● съём данных с подключённых датчиков,
    ● оцифровка полученных данных,
    ● отработка технологического алгоритма,
    ● выдача управляющих воздействий на подключенные исполнительные механизмы по команде другого узла или согласно технологическому алгоритму,
    ● передача накопленной информации на другие узлы ЦПС.

    [Константин Кругляк. Промышленные сети: цели и средства. СТА 4/2002]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > fieldbus node

  • 15 ALG

    1. шлюз уровня
    2. шлюз прикладного уровня
    3. алгоритм

     

    алгоритм
    Конечный набор предписаний для получения решения задачи посредством конечного количества операций.
    [ ГОСТ 34.003-90]

    алгоритм
    Конечное упорядоченное множество точно определенных правил для решения конкретной задачи.
    [ИСО/МЭК 2382-1]
    [ ГОСТ Р 52292-2004]

    алгоритм
    Последовательность действий для определенного вычисления
    [ ГОСТ 30721-2000]
    [ ГОСТ Р 51294.3-99]

    алгоритм
    Набор упорядоченных шагов для решения задачи, такой как математическая формула или инструкция в программе. В контексте кодирования речи алгоритмами называют математические методы, используемые для компрессии речи. Уникальные алгоритмы кодирования речи патентуются. Конкретные реализации алгоритмов в компьютерных программах также являются субъектом авторского права.
    Совокупность четко определенных правил, процедур или команд, обеспечивающих решение поставленной задачи за конечное число шагов.
    [ http://www.morepc.ru/dict/]

    алгоритм
    алгорифм
    Точное предписание относительно последовательности действий (шагов), преобразующих исходные данные в искомый результат. Это понятие появилось за много веков до появления компьютеров, с которыми его обычно связывают. Термин же происходит от слова Algorithmi, так на латинском языке звучало имя хорезмского математика IX столетия аль-Хорезми, трактат которого в средние века был распространен в Европе. Тогда алгоритмом называлось десятичное счисление и искусство счета в этой системе. А. — основа решения любой экономико-математической задачи, задачи управления, а также построения многих экономико-математических моделей — особенно прикладных, предназначенных для практических расчетов на компьютерах. Оценка качества А. обычно определяется его сходимостью (если А. не сходится, он не годится), скоростью сходимости (чем она выше, т.е. чем меньше шагов требуется для решения, тем А. лучше); кроме того, важную роль играют время счета на компьютере (оно зависит не только от числа шагов, но и других обстоятельств), удобство обращения к А., возможность работы в режиме диалога человека и ЭВМ. Для наглядности алгоритм, если он относительно прост, можно отобразить в виде блок-схемы (см. рис. А.2). А., записанный таким образом, чтобы его могла выполнять вычислительная машина, называется программой. Рис.А.2 Блок-схема алгоритма вычисления среднего арифметического Среди важнейших (для экономико-математических приложений) видов алгоритмов назовем следующие: Алгоритмитеративный [iterative routine] - см. Итеративные методы. Алгоритм моделирующий. [simulator] - алгоритм (компьютерная программа), имитирующий при исследовании сложных систем взаимодействие элементов процесса и позволяющий при заданной совокупности экзогенных величин (параметров, управляющих переменных) получить эндогенные величины (выходы) или их искомые характеристики. Алгоритм циклический [cyclical algorithm] - алгоритм, при котором через какое-то (обычно большое) число шагов результаты начинают повторяться. Таков, например, А. вычисления на компьютере псевдослучайных чисел. Алгоритм управления [control procedure] - точно определенный порядок выработки управленческих решений, формирования планов, обмена информацией в процессе управления. Тщательная отработка А. у. — необходимый этап проектирования любой АСУ. Для проверки А.у. эффективно применение методов машинной имитации.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    DE

    FR

     

    шлюз прикладного уровня
    Устройство, поддерживающее протоколы, которое соединяет два или более участка сети, и может интерпретировать и модифицировать протоколы уровня приложения для обеспечения трансляций адресов передачи и выполнения других функций. ALG может обеспечивать NAT транспортного уровня и функции брандмауэра изнутри или может контролировать их извне (МСЭ-Т Н.235.3, МСЭ-Т Н.235.9).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    шлюз уровня
    (МСЭ-Т Н.235.0).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > ALG

  • 16 route calculation

    вычисление (определение, нахождение, прокладка) маршрута
    в навигационных системах - нахождение самого короткого или самого быстрого маршрута между двумя точками (пунктами). В планировщике маршрута (route planner) для этой цели применяются методы теории графов (graph theory) и разновидность алгоритма Дейкстры или А* (см. A* search). Эти алгоритмы учитывают только связность навигационных элементов (navigable feature) и показатели сопротивления, или трудности прохождения (impedance factor) каждого навигационного элемента. При вычислении кратчайшего маршрута между двумя точками сети (вершинами графа) в качестве показателя сопротивления используется длина навигационных элементов (отрезков пути), а при вычислении самого быстрого маршрута используется как длина, так и скорость прохождения каждого отрезка пути
    см. тж. navigation system

    Англо-русский толковый словарь терминов и сокращений по ВТ, Интернету и программированию. > route calculation

  • 17 CRC

    1. циклический контроль по четности
    2. циклический контроль ошибок по избыточности
    3. циклический избыточный код
    4. циклическая проверка четности с избыточностью
    5. циклическая проверка на основе избыточности
    6. противокоррозионная наплавка
    7. Объединённый комитет по научным исследованиям
    8. неизменный реактивный ток
    9. Научно-исследовательский совет по коррозии (США)
    10. модель расширенного канала
    11. критический элемент оборудования ядерного реактора
    12. контроль циклическим избыточным кодом
    13. контроль с использованием циклического избыточного кода
    14. контроль на основе избыточного циклического кода
    15. Комитет по координации научных исследований

     

    Комитет по координации научных исследований

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    контроль на основе избыточного циклического кода
    Способ продольного контроля данных, который обеспечивает коррекцию ошибок.
    [Домарев В.В. Безопасность информационных технологий. Системный подход.]

    Тематики

    EN

     

    контроль с использованием циклического избыточного кода

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

     

    контроль циклическим избыточным кодом
    Метод повышения достоверности передачи данных, при котором передатчик включает в каждый передаваемый кадр избыточные символы, рассчитанные по принципу делимости полиномов, а приемник, повторяя этот расчет, контролирует отсутствие искажений при передаче.
    [ ГОСТ Р 54325-2011 (IEC/TS 61850-2:2003)]

    EN

    Cyclic Redundancy Check, CRC
    this is calculated and included in each frame transmitted by the sending device, the receiving device recalculates the CRC for that frame, as received, as a check for any transit damage in that frame
    [IEC 61850-2, ed. 1.0 (2003-08)]

    Тематики

    EN

     

    критический элемент оборудования ядерного реактора

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    Научно-исследовательский совет по коррозии (США)

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    неизменный реактивный ток

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999]

    Тематики

    • электротехника, основные понятия

    EN

     

    Объединённый комитет по научным исследованиям

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    противокоррозионная наплавка
    (тепловыделяющего элемента ядерного реактора)
    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    циклическая проверка на основе избыточности
    Способ обнаружения ошибок с использованием циклического кода. На передаче вычисляется контрольная сумма передаваемого модуля данных и передаётся вместе с данными. На приеме контрольная сумма вычисляется заново по тому же алгоритму и сравнивается с принятым значением. Отсутствие расхождений говорит о безошибочной передаче (МСЭ-Т О.211).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    циклическая проверка четности с избыточностью
    Схема определения ошибок при передаче данных. На основе полиномиального алгоритма вычисляется контрольная сумма передаваемого модуля данных и передается вместе с данными. Получившее пакет устройство заново вычисляет контрольную сумму по тому же алгоритму и сравнивает ее с принятым значением. Отсутствие расхождений говорит о высокой вероятности безошибочной передачи.
    [ http://www.morepc.ru/dict/]

    Тематики

    EN

     

    циклический избыточный код
    CRC

    Проверка циклического избыточного кода выполняется на основе полинома, рассчитываемого как в передающем, так и в принимающем узлах.
    [ http://can-cia.com/fileadmin/cia/pdfs/CANdictionary-v2_ru.pdf]

    циклический избыточный код
    Класс кодов, который получил широкое распространение в радиосвязи, благодаря простоте выполнения операций кодирования и декодирования данных. Из n символов,
    образующих кодовую последовательность k символов являются информационными, а остальные (n-k) избыточными. Число этих (n-k) дополнительных символов и определяет корректирующую способность кода, позволяя не только обнаруживать ошибки, но и их исправлять.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    Синонимы

    EN

     

    циклический контроль ошибок по избыточности

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    EN

     

    циклический контроль по четности
    Метод обнаружения ошибок. Основан на разбиении исходного потока битов на блоки и делении количества битов в блоке на определенное число, например, 10001000000100001 (порождающий многочлен x16126+х°). В качестве делителя обычно выбирается 17- или 33-разрядное число, что дает остаток от деления, равный 16 или 32 проверочным битам, вставляемым после блока данных. Циклический контроль по четности получил широкое распространение в локальных сетях.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    • электросвязь, основные понятия

    EN

    01.05.24 модель расширенного канала [ extended channel model]: Система кодирования и передачи как байтов с данными сообщения, так и управляющей информации о сообщении, в пределах которой декодер работает в режиме расширенного канала.

    Примечание - Управляющая информация передается с использованием управляющих последовательностей интерпретации в расширенном канале (ECI).

    <2>4 Сокращения1)

    1)Следует учитывать, что в соответствии с оригиналом ИСО/МЭК 19762-1 в данном разделе присутствует сокращение CSMA/CD, которое в тексте стандарта не используется.

    Кроме того, сокращения отсортированы в алфавитном порядке.

    Al

    Идентификатор применения [application identifier]

    ANS

    Американский национальный стандарт [American National Standard]

    ANSI

    Американский национальный институт стандартов [American National Standards Institute]

    ASC

    Аккредитованный комитет по стандартам [Accredited Standards Committee]

    вес

    Контрольный знак блока [block check character]

    BCD

    Двоично-десятичный код (ДДК) [binary coded decimal]

    BER

    Коэффициент ошибок по битам [bit error rate]

    CRC

    Контроль циклическим избыточным кодом [cyclic redundancy check]

    CSMA/CD

    Коллективный доступ с контролем несущей и обнаружением конфликтов [carrier sense multiple access with collision detection network]

    CSUM

    Контрольная сумма [check sum]

    Dl

    Идентификатор данных [data identifier]

    ECI

    Интерпретация в расширенном канале [extended channel interpretation]

    EDI

    Электронный обмен данными (ЭОД) [electronic data interchange]

    EEPROM

    Электрически стираемое программируемое постоянное запоминающее устройство [electrically erasable programmable read only memory]

    HEX

    Шестнадцатеричная система счисления [hexadecimal]

    INCITS

    Международный комитет по стандартам информационных технологий [International Committee for Information Technology Standards]

    LAN

    Локальная вычислительная сеть [local area network]

    Laser

    Усиление света с помощью вынужденного излучения [light amplification by the stimulated emission of radiation]

    LED

    Светоизлучающий диод [light emitting diode]

    LLC

    Управление логической связью [logical link control]

    LSB

    Младший значащий бит [least significant bit]

    МНЮ

    Аккредитованный комитет по отраслевым стандартам в сфере обработки грузов [Accredited Standards Committee for the Material Handling Industry]

    MSB

    Старший значащий бит [most significant bit]

    MTBF

    Средняя наработка на отказ [mean time between failures]

    MTTR

    Среднее время ремонта [mean time to repair]

    NRZ

    Без возвращения к нулю [non-return to zero code]

    NRZ Space

    Кодирование без возвращения к нулю с перепадом на нулях [non-return to zero-space]

    NRZ-1

    Кодирование без возвращения к нулю с перепадом на единицах [non-return to zero invert on ones]

    NRZ-M

    Запись без возвращения к нулю (метка) [non-return to zero (mark) recording]

    RTI

    Возвратное транспортное упаковочное средство [returnable transport item]

    RZ

    Кодирование с возвратом к нулю [return to zero]

    VLD

    Светоизлучающий лазерный диод [visible laser diode]

    <2>Библиография

    [1]

    ИСО/МЭК Руководство 2

    Стандартизация и связанная с ней деятельность. Общий словарь

    (ISO/IECGuide2)

    (Standardization and related activities - General vocabulary)

    [2]

    ИСО/МЭК 2382-1

    Информационные технологии. Словарь - Часть 1. Основные термины

    (ISO/IEC 2382-1)

    (Information technology - Vocabulary - Part 1: Fundamental terms)

    [3]

    ИСО/МЭК 2382-4

    Информационные технологии. Словарь - Часть 4. Организация данных

    (ISO/IEC 2382-4)

    (Information technology - Vocabulary - Part 4: Organization of data)

    [4]

    ИСО/МЭК 2382-9

    Информационные технологии. Словарь. Часть 9. Передача данных

    (ISO/IEC 2382-9)

    (Information technology - Vocabulary - Part 9: Data communication)

    [5]

    ИСО/МЭК 2382-16

    Информационные технологии. Словарь. Часть 16. Теория информации

    (ISO/IEC 2382-16)

    (Information technology - Vocabulary - Part 16: Information theory)

    [6]

    ИСО/МЭК 19762-2

    Информационные технологии. Технологии автоматической идентификации и сбора данных (АИСД). Гармонизированный словарь. Часть 2. Оптические носители данных (ОНД)

    (ISO/IEC 19762-2)

    (Information technology - Automatic identification and data capture (AIDC) techniques - Harmonized vocabulary - Part 2: Optically readable media (ORM))

    [7]

    ИСО/МЭК 19762-3

    Информационные технологии. Технологии автоматической идентификации и сбора данных (АИСД). Гармонизированный словарь. Часть 3. Радиочастотная идентификация (РЧИ)

    (ISO/IEC 19762-3)

    (Information technology - Automatic identification and data capture (AIDC) techniques - Harmonized vocabulary - Part 3: Radio frequency identification (RFID)

    [8]

    ИСО/МЭК 19762-4

    Информационные технологии. Технологии автоматической идентификации и сбора данных (АИСД). Гармонизированный словарь. Часть 4. Основные термины в области радиосвязи

    (ISO/IEC 19762-4)

     (Information technology-Automatic identification and data capture (AIDC) techniques - Harmonized vocabulary - Part 4: General terms relating to radio communications)

    [9]

    ИСО/МЭК 19762-5

    Информационные технологии. Технологии автоматической идентификации и сбора данных (АИСД). Гармонизированный словарь. Часть 5. Системы определения места нахождения

    (ISO/IEC 19762-5)

    (Information technology - Automatic identification and data capture (AIDC) techniques - Harmonized vocabulary - Part 5: Locating systems)

    [10]

    МЭК 60050-191

    Международный Электротехнический Словарь. Глава 191. Надежность и качество услуг

    (IEC 60050-191)

    (International Electrotechnical Vocabulary - Chapter 191: Dependability and quality of Service)

    [11]

    МЭК 60050-702

    Международный Электротехнический Словарь. Глава 702. Колебания, сигналы и соответствующие устройства

    (IEC 60050-702)

    (International Electrotechnical Vocabulary - Chapter 702: Oscillations, signals and related devices)

    [12]

    МЭК 60050-704

    Международный Электротехнический словарь. Глава 704. Техника передачи

    (IEC 60050-704)

    (International Electrotechnical Vocabulary. Chapter 704: Transmission)

    [13]

    МЭК 60050-845

    Международный электротехнический словарь. Глава 845. Освещение

    (IEC 60050-845)

    (International Electrotechnical Vocabulary - Chapter 845: Lighting)

    <2>

    Источник: ГОСТ Р ИСО/МЭК 19762-1-2011: Информационные технологии. Технологии автоматической идентификации и сбора данных (АИСД). Гармонизированный словарь. Часть 1. Общие термины в области АИСД оригинал документа

    Англо-русский словарь нормативно-технической терминологии > CRC

  • 18 cyclic redundancy check

    1. циклический контроль по четности
    2. циклический контроль ошибок по избыточности
    3. циклический избыточный код
    4. циклическая проверка четности с избыточностью
    5. циклическая проверка на основе избыточности
    6. контроль циклическим избыточным кодом
    7. контроль с использованием циклического избыточного кода

     

    контроль с использованием циклического избыточного кода

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

     

    контроль циклическим избыточным кодом
    Метод повышения достоверности передачи данных, при котором передатчик включает в каждый передаваемый кадр избыточные символы, рассчитанные по принципу делимости полиномов, а приемник, повторяя этот расчет, контролирует отсутствие искажений при передаче.
    [ ГОСТ Р 54325-2011 (IEC/TS 61850-2:2003)]

    EN

    Cyclic Redundancy Check, CRC
    this is calculated and included in each frame transmitted by the sending device, the receiving device recalculates the CRC for that frame, as received, as a check for any transit damage in that frame
    [IEC 61850-2, ed. 1.0 (2003-08)]

    Тематики

    EN

     

    циклическая проверка на основе избыточности
    Способ обнаружения ошибок с использованием циклического кода. На передаче вычисляется контрольная сумма передаваемого модуля данных и передаётся вместе с данными. На приеме контрольная сумма вычисляется заново по тому же алгоритму и сравнивается с принятым значением. Отсутствие расхождений говорит о безошибочной передаче (МСЭ-Т О.211).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    циклическая проверка четности с избыточностью
    Схема определения ошибок при передаче данных. На основе полиномиального алгоритма вычисляется контрольная сумма передаваемого модуля данных и передается вместе с данными. Получившее пакет устройство заново вычисляет контрольную сумму по тому же алгоритму и сравнивает ее с принятым значением. Отсутствие расхождений говорит о высокой вероятности безошибочной передачи.
    [ http://www.morepc.ru/dict/]

    Тематики

    EN

     

    циклический избыточный код
    CRC

    Проверка циклического избыточного кода выполняется на основе полинома, рассчитываемого как в передающем, так и в принимающем узлах.
    [ http://can-cia.com/fileadmin/cia/pdfs/CANdictionary-v2_ru.pdf]

    циклический избыточный код
    Класс кодов, который получил широкое распространение в радиосвязи, благодаря простоте выполнения операций кодирования и декодирования данных. Из n символов,
    образующих кодовую последовательность k символов являются информационными, а остальные (n-k) избыточными. Число этих (n-k) дополнительных символов и определяет корректирующую способность кода, позволяя не только обнаруживать ошибки, но и их исправлять.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    Синонимы

    EN

     

    циклический контроль ошибок по избыточности

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    EN

     

    циклический контроль по четности
    Метод обнаружения ошибок. Основан на разбиении исходного потока битов на блоки и делении количества битов в блоке на определенное число, например, 10001000000100001 (порождающий многочлен x16126+х°). В качестве делителя обычно выбирается 17- или 33-разрядное число, что дает остаток от деления, равный 16 или 32 проверочным битам, вставляемым после блока данных. Циклический контроль по четности получил широкое распространение в локальных сетях.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    • электросвязь, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > cyclic redundancy check

  • 19 decision box

    блок принятия решения

    English-Russian terms for network planning and management > decision box

См. также в других словарях:

  • АЛГОРИТМА СЛОЖНОСТЬ — вычислений функция, дающая числовую оценку трудности (громоздкости) процессов применения алгоритма к исходным данным. Уточнением А. с. вычислений служит понятие сигнализирующей функции (или просто сигнализирующей) функции, к рая задается… …   Математическая энциклопедия

  • Алгоритм синтеза многосвязной сети — Содержание 1 Исходные данные 2 Построение матрицы базовой топологии …   Википедия

  • Файлообменные сети — Файлообменная сеть – собирательное название сетей для совместного использования файлов. Часто в основе файлообменных сетей лежат одноранговые компьютерные сети, основанные на равноправии участвующих в обмене файлами, то есть каждый участник …   Энциклопедия ньюсмейкеров

  • Анонимные сети — Анонимные сети  компьютерные сети, созданные для достижения анонимности в Интернете и работающие поверх глобальной сети. Специфика таких сетей заключается в том, что разработчики вынуждены идти на компромисс между степенью защиты и лёгкостью …   Википедия

  • коммутатор (в вычислительной сети) — коммутатор Коммутатор (англ. Switch) в переводе с англ. означает переключатель. Это многопортовое устройство, обеспечивающее высокоскоростную коммутацию пакетов между портами. Встроенное в него программное обеспечение способно самостоятельно… …   Справочник технического переводчика

  • сервер (сети и системы связи) — Функциональный узел в сети связи, который предоставляет данные другим функциональным узлам или выдает разрешение на доступ к своим ресурсам другим функциональным узлам, который может быть также логическим подразделом с независимым управлением… …   Справочник технического переводчика

  • ГОСТ 28147-89 — Создатель: КГБ, 8 е управление Создан: 1989 г. Опубликован …   Википедия

  • Компилятор — Эта статья включает описание термина «Компиляция»; см. также другие значения. Компилятор  программа или техническое средство, выполняющее компиляцию.[1][2][3] Компиляция  трансляция программы, составленной на исходном языке высокого… …   Википедия

  • Компиляторы — Компилятор  Программа или техническое средство, выполняющее компиляцию.[1][2] Машинная программа, используемая для компиляции.[3][2] Транслятор, выполняющий преобразование программы, составленной на исходном языке, в объектный модуль …   Википедия

  • Компиляция (программирование) — Компилятор  Программа или техническое средство, выполняющее компиляцию.[1][2] Машинная программа, используемая для компиляции.[3][2] Транслятор, выполняющий преобразование программы, составленной на исходном языке, в объектный модуль …   Википедия

  • Кибернетический эксперимент — состоит в том, что исходная система управления заменяется моделью, которая затем изучается. Принципиально моделирование состоит в создании системы управления, изоморфной или приближенно изоморфной данной, и в наблюдении за ее функционированием… …   Википедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»